BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 24957226)

  • 1. Crystallization of mouse RIG-I ATPase domain: in situ proteolysis.
    Civril F; Hopfner KP
    Methods Mol Biol; 2014; 1169():27-35. PubMed ID: 24957226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-based model of RIG-I activation.
    Kolakofsky D; Kowalinski E; Cusack S
    RNA; 2012 Dec; 18(12):2118-27. PubMed ID: 23118418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and preliminary crystallographic studies of human RIG-I in complex with double-stranded RNA.
    Moon H; Choe J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jun; 65(Pt 6):648-50. PubMed ID: 19478455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression, purification, crystallization and preliminary X-ray analysis of full-length human RIG-I.
    Kwok J; Hui KP; Lescar J; Kotaka M
    Acta Crystallogr F Struct Biol Commun; 2014 Feb; 70(Pt 2):248-51. PubMed ID: 24637767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAMPer and tRIGer: ligand-induced activation of RIG-I.
    Bowzard JB; Davis WG; Jeisy-Scott V; Ranjan P; Gangappa S; Fujita T; Sambhara S
    Trends Biochem Sci; 2011 Jun; 36(6):314-9. PubMed ID: 21497095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis of 5' triphosphate double-stranded RNA recognition by RIG-I C-terminal domain.
    Lu C; Xu H; Ranjith-Kumar CT; Brooks MT; Hou TY; Hu F; Herr AB; Strong RK; Kao CC; Li P
    Structure; 2010 Aug; 18(8):1032-43. PubMed ID: 20637642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing viral RNAs by Dicer/RIG-I like ATPases across species.
    Paro S; Imler JL; Meignin C
    Curr Opin Immunol; 2015 Feb; 32():106-13. PubMed ID: 25658360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal and solution structure of the human RIG-I SF2 domain.
    Deimling T; Cui S; Lammens K; Hopfner KP; Witte G
    Acta Crystallogr F Struct Biol Commun; 2014 Aug; 70(Pt 8):1027-31. PubMed ID: 25084375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling.
    Civril F; Bennett M; Moldt M; Deimling T; Witte G; Schiesser S; Carell T; Hopfner KP
    EMBO Rep; 2011 Oct; 12(11):1127-34. PubMed ID: 21979817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the spliceosomal DEAH-box ATPase Prp2.
    Schmitt A; Hamann F; Neumann P; Ficner R
    Acta Crystallogr D Struct Biol; 2018 Jul; 74(Pt 7):643-654. PubMed ID: 29968674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the second domain of the Bacillus subtilis DEAD-box RNA helicase YxiN.
    Caruthers JM; Hu Y; McKay DB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Dec; 62(Pt 12):1191-5. PubMed ID: 17142894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RIG-I-like receptors: sensing and responding to RNA virus infection.
    Nakhaei P; Genin P; Civas A; Hiscott J
    Semin Immunol; 2009 Aug; 21(4):215-22. PubMed ID: 19539500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide.
    Omura H; Oikawa D; Nakane T; Kato M; Ishii R; Ishitani R; Tokunaga F; Nureki O
    Sci Rep; 2016 Oct; 6():34756. PubMed ID: 27721487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of innate immune recognition of viral RNA.
    Berke IC; Li Y; Modis Y
    Cell Microbiol; 2013 Mar; 15(3):386-94. PubMed ID: 23110455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lock-washer: a reconciliation of the RIG-I activation models.
    Zhu S; Jackson R; Flavell RA
    Cell Res; 2014 Jun; 24(6):645-6. PubMed ID: 24797430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic synthesis and purification of a defined RIG-I ligand.
    Goldeck M; Schlee M; Hartmann G; Hornung V
    Methods Mol Biol; 2014; 1169():15-25. PubMed ID: 24957225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein purification, crystallization, and structure determination of human DEAD-box RNA helicase DDX21 in different unwinding states.
    Chen Z; Huang J; Li J
    STAR Protoc; 2022 Sep; 3(3):101642. PubMed ID: 36042885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination.
    Gheyi T; Rodgers L; Romero R; Sauder JM; Burley SK
    J Am Soc Mass Spectrom; 2010 Oct; 21(10):1795-801. PubMed ID: 20685133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the activation of RIG-I, a nanosensor for viral RNAs.
    Jiang QX; Chen ZJ
    EMBO Rep; 2011 Dec; 13(1):7-8. PubMed ID: 22157887
    [No Abstract]   [Full Text] [Related]  

  • 20. In situ proteolysis to generate crystals for structure determination: an update.
    Wernimont A; Edwards A
    PLoS One; 2009; 4(4):e5094. PubMed ID: 19352432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.