These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24957251)

  • 1. Oxidative stress response in Pseudomonas putida.
    Kim J; Park W
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):6933-46. PubMed ID: 24957251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli.
    Park W; Peña-Llopis S; Lee Y; Demple B
    Biochem Biophys Res Commun; 2006 Mar; 341(1):51-6. PubMed ID: 16412384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of FinR, a novel redox-sensing transcriptional regulator in Pseudomonas putida KT2440.
    Yeom S; Yeom J; Park W
    Microbiology (Reading); 2010 May; 156(Pt 5):1487-1496. PubMed ID: 20056701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response.
    Svenningsen NB; Pérez-Pantoja D; Nikel PI; Nicolaisen MH; de Lorenzo V; Nybroe O
    BMC Microbiol; 2015 Oct; 15():202. PubMed ID: 26445482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NtrC-sensed nitrogen availability is important for oxidative stress defense in Pseudomonas putida KT2440.
    Yeom S; Yeom J; Park W
    J Microbiol; 2010 Apr; 48(2):153-9. PubMed ID: 20437145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High c-di-GMP promotes expression of fpr-1 and katE involved in oxidative stress resistance in Pseudomonas putida KT2440.
    Xiao Y; Zhu W; He M; Nie H; Chen W; Huang Q
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9077-9089. PubMed ID: 31673742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440.
    Lee Y; Peña-Llopis S; Kang YS; Shin HD; Demple B; Madsen EL; Jeon CO; Park W
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1246-54. PubMed ID: 16360643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.
    Bojanovič K; D'Arrigo I; Long KS
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FinR Regulates Expression of
    Xiao Y; Zhu W; Liu H; Nie H; Chen W; Huang Q
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Metabolic Redox Regime of Pseudomonas putida Tunes Its Evolvability toward Novel Xenobiotic Substrates.
    Akkaya Ö; Pérez-Pantoja DR; Calles B; Nikel PI; de Lorenzo V
    mBio; 2018 Aug; 9(4):. PubMed ID: 30154264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress.
    Barrientos-Moreno L; Molina-Henares MA; Pastor-García M; Ramos-González MI; Espinosa-Urgel M
    J Bacteriol; 2019 Nov; 201(22):. PubMed ID: 31451546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida.
    Hishinuma S; Yuki M; Fujimura M; Fukumori F
    Environ Microbiol; 2006 Dec; 8(12):2115-24. PubMed ID: 17107553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Narrative of a versatile and adept species
    Kivisaar M
    J Med Microbiol; 2020 Mar; 69(3):324-338. PubMed ID: 31958045
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria.
    Chiang SM; Schellhorn HE
    Arch Biochem Biophys; 2012 Sep; 525(2):161-9. PubMed ID: 22381957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress.
    Chavarría M; Nikel PI; Pérez-Pantoja D; de Lorenzo V
    Environ Microbiol; 2013 Jun; 15(6):1772-85. PubMed ID: 23301697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response.
    Palma M; Zurita J; Ferreras JA; Worgall S; Larone DH; Shi L; Campagne F; Quadri LE
    Infect Immun; 2005 May; 73(5):2958-66. PubMed ID: 15845502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida.
    Kim J; Jeon CO; Park W
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3905-3916. PubMed ID: 19047757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E.
    Pini CV; Bernal P; Godoy P; Ramos JL; Segura A
    Microb Biotechnol; 2009 Mar; 2(2):253-61. PubMed ID: 21261919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida.
    Wu X; Monchy S; Taghavi S; Zhu W; Ramos J; van der Lelie D
    FEMS Microbiol Rev; 2011 Mar; 35(2):299-323. PubMed ID: 20796030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure.
    Svenningsen NB; Martínez-García E; Nicolaisen MH; de Lorenzo V; Nybroe O
    Microbiology (Reading); 2018 Jun; 164(6):883-888. PubMed ID: 29738306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.