BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24957254)

  • 1. Interaction of one anthraquinone derivative with ctDNA analyzed by spectroscopic and modeling methods.
    Cui Y; Fu Z; Geng S; Zhang G; Cui F
    J Fluoresc; 2014 Sep; 24(5):1389-96. PubMed ID: 24957254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate spectrochemical analysis of interactions of three common Isatin derivatives to calf thymus DNA in vitro.
    Shahbazy M; Pakravan P; Kompany-Zareh M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2539-2556. PubMed ID: 27593978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA.
    Fu Z; Cui Y; Cui F; Zhang G
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():572-9. PubMed ID: 26436845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multispectroscopic and computational techniques to study the interaction of anthraquinone appended sensor with calf thymus DNA.
    Kumar D; Gauri ; Kaur N
    J Biomol Struct Dyn; 2024 May; 42(8):4370-4378. PubMed ID: 37227792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic, viscositic and molecular modeling studies on the interaction of 3'-azido-daunorubicin thiosemicarbazone with DNA.
    Cui F; Liu Q; Luo H; Zhang G
    J Fluoresc; 2014 Jan; 24(1):189-95. PubMed ID: 23974700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques.
    Wu D; Chen Z
    Luminescence; 2015 Dec; 30(8):1212-8. PubMed ID: 25727213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic study one thiosemicarbazone derivative with ctDNA using ethidium bromide as a fluorescence probe.
    Geng S; Wu Q; Shi L; Cui F
    Int J Biol Macromol; 2013 Sep; 60():288-94. PubMed ID: 23769721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the interaction of an anthracycline disaccharide with DNA by spectroscopic techniques and molecular modeling.
    Lu Y; Wang GK; Lv J; Zhang GS; Liu QF
    J Fluoresc; 2011 Jan; 21(1):409-14. PubMed ID: 20953826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of an anthracycline disaccharide with ctDNA: Investigation by spectroscopic technique and modeling studies.
    Lu Y; Lv J; Zhang G; Wang G; Liu Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1511-5. PubMed ID: 20197239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic studies on the interaction of isatin with calf thymus DNA.
    Kashanian S; Khodaei MM; Pakravan P
    DNA Cell Biol; 2010 Oct; 29(10):639-46. PubMed ID: 20590475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods.
    Zhang S; Sun X; Kong R; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1666-70. PubMed ID: 25459730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding properties of herbicide chlorpropham to DNA: spectroscopic, chemometrics and modeling investigations.
    Li Y; Zhang G; Tao M
    J Photochem Photobiol B; 2014 Sep; 138():109-17. PubMed ID: 24927231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the interaction of anthraquinone with DNA by spectroscopy, molecular modeling and cancer cell imaging technique.
    Yang L; Fu Z; Niu X; Zhang G; Cui F; Zhou C
    Chem Biol Interact; 2015 May; 233():65-70. PubMed ID: 25834985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies.
    Wani TA; Alsaif N; Bakheit AH; Zargar S; Al-Mehizia AA; Khan AA
    Bioorg Chem; 2020 Jul; 100():103957. PubMed ID: 32470763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the interaction mechanism of 2-aminoanthraquinone with calf thymus DNA.
    Yang H; Song W; Jing M; Liu R
    J Biochem Mol Toxicol; 2013 May; 27(5):272-8. PubMed ID: 23606275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of DNA interactions with bifenthrin by spectroscopic techniques and molecular modeling.
    Zhu P; Zhang G; Ma Y; Zhang Y; Miao H; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():7-14. PubMed ID: 23651773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic Evidence of Phosphorous Heterocycle-DNA Interaction and its Verification by Docking Approach.
    Roy S; Saxena SK; Mishra S; Yogi P; Sagdeo PR; Kumar R
    J Fluoresc; 2018 Jan; 28(1):373-380. PubMed ID: 29243048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding studies of terbutaline sulfate to calf thymus DNA using multispectroscopic and molecular docking techniques.
    Bi S; Zhao T; Wang Y; Zhou H; Pang B; Gu T
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():921-7. PubMed ID: 26123508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorometric study of fluoxetine DNA binding.
    Kashanian S; Javanmardi S; Chitsazan A; Paknejad M; Omidfar K
    J Photochem Photobiol B; 2012 Aug; 113():1-6. PubMed ID: 22591956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.
    Shahabadi N; Khodaei MM; Kashanian S; Kheirdoosh F
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():1-6. PubMed ID: 24177861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.