These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 24957276)

  • 21. An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators.
    Deniz FN; Alagoz BB; Tan N; Atherton DP
    ISA Trans; 2016 May; 62():154-63. PubMed ID: 26876378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-objective LQR with optimum weight selection to design FOPID controllers for delayed fractional order processes.
    Das S; Pan I; Das S
    ISA Trans; 2015 Sep; 58():35-49. PubMed ID: 26096954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and implementation of fractional order pole placement controller to control the magnetic flux in Damavand tokamak.
    Rasouli H; Fatehi A; Zamanian H
    Rev Sci Instrum; 2015 Mar; 86(3):033503. PubMed ID: 25832225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A uniform LMI formulation for tuning PID, multi-term fractional-order PID, and Tilt-Integral-Derivative (TID) for integer and fractional-order processes.
    Merrikh-Bayat F
    ISA Trans; 2017 May; 68():99-108. PubMed ID: 28318548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PID tuning rules for SOPDT systems: review and some new results.
    Panda RC; Yu CC; Huang HP
    ISA Trans; 2004 Apr; 43(2):283-95. PubMed ID: 15098587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fractional order PID for tracking control of a parallel robotic manipulator type delta.
    Angel L; Viola J
    ISA Trans; 2018 Aug; 79():172-188. PubMed ID: 29793737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration.
    Zamani A; Barakati SM; Yousofi-Darmian S
    ISA Trans; 2016 Sep; 64():56-66. PubMed ID: 27172840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fractional-order PID design: Towards transition from state-of-art to state-of-use.
    Chevalier A; Francis C; Copot C; Ionescu CM; De Keyser R
    ISA Trans; 2019 Jan; 84():178-186. PubMed ID: 30342816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Internal model-based control for integrating processes.
    Chia TL; Lefkowitz I
    ISA Trans; 2010 Oct; 49(4):519-27. PubMed ID: 20471640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.
    Alagoz BB; Deniz FN; Keles C; Tan N
    ISA Trans; 2015 Mar; 55():63-71. PubMed ID: 25311160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disturbance-rejection-based tuning of proportional-integral-derivative controllers by exploiting closed-loop plant data.
    Jeng JC; Ge GP
    ISA Trans; 2016 May; 62():312-24. PubMed ID: 26922494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dominant pole placement with fractional order PID controllers: D-decomposition approach.
    Mandić PD; Šekara TB; Lazarević MP; Bošković M
    ISA Trans; 2017 Mar; 67():76-86. PubMed ID: 27939223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient method for time-domain simulation of the linear feedback systems containing fractional order controllers.
    Merrikh-Bayat F
    ISA Trans; 2011 Apr; 50(2):170-6. PubMed ID: 21272878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal tuning of fractional-order controllers based on Fibonacci-search method.
    Horla D; Sadalla T
    ISA Trans; 2020 Sep; 104():287-298. PubMed ID: 32473734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning of PID controllers for integrating systems using direct synthesis method.
    Anil Ch; Padma Sree R
    ISA Trans; 2015 Jul; 57():211-9. PubMed ID: 25800952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes.
    Hu W; Xiao G; Li X
    ISA Trans; 2011 Apr; 50(2):268-76. PubMed ID: 21281933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of direct action fuzzy PID controller structures.
    Mann GI; Hu BG; Gosine RG
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(3):371-88. PubMed ID: 18252311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Closed-loop control and advisory mode evaluation of an artificial pancreatic Beta cell: use of proportional-integral-derivative equivalent model-based controllers.
    Percival MW; Zisser H; Jovanovic L; Doyle FJ
    J Diabetes Sci Technol; 2008 Jul; 2(4):636-44. PubMed ID: 19885240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IMC-PID design based on model matching approach and closed-loop shaping.
    Jin QB; Liu Q
    ISA Trans; 2014 Mar; 53(2):462-73. PubMed ID: 24280534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor.
    Zhang B; Pi Y
    ISA Trans; 2013 Jul; 52(4):510-6. PubMed ID: 23477669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.