These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2495759)

  • 1. In vitro metabolism of 2,2'-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal protozoa and bacteria.
    Denholm AM; Ling JR
    Appl Environ Microbiol; 1989 Jan; 55(1):212-8. PubMed ID: 2495759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo metabolism of 2,2'-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal microorganisms and ruminants and its use as a marker of bacterial biomass.
    Masson HA; Denholm AM; Ling JR
    Appl Environ Microbiol; 1991 Jun; 57(6):1714-20. PubMed ID: 1872603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro metabolism of the stereoisomers of 2,6-diaminopimelic acid by mixed rumen protozoa and bacteria.
    El-Waziry AM; Onodera R
    Curr Microbiol; 1996 Nov; 33(5):306-11. PubMed ID: 8875911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vitro metabolism of 2,6-diaminopimelic acid by rumen micro-organisms.
    Lane HA; Ling JR
    Proc Nutr Soc; 1979 Sep; 38(2):80A. PubMed ID: 504199
    [No Abstract]   [Full Text] [Related]  

  • 5. In vitro production of lysine from 2,2'-diaminopimelic acid by rumen protozoa.
    Onodera R; Takashima H; Ling JR
    J Protozool; 1991; 38(4):421-5. PubMed ID: 1787428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of uptake and incorporation of meso-diaminopimelic acid in different Escherichia coli strains.
    Wientjes FB; Pas E; Taschner PE; Woldringh CL
    J Bacteriol; 1985 Oct; 164(1):331-7. PubMed ID: 3900040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of LL-diaminopimelic acid into peptidoglycan of Escherichia coli mutants lacking diaminopimelate epimerase encoded by dapF.
    Mengin-Lecreulx D; Michaud C; Richaud C; Blanot D; van Heijenoort J
    J Bacteriol; 1988 May; 170(5):2031-9. PubMed ID: 3283102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the possibility of histidine biosynthesis from histodinol, imidazolepyruvic acid, imidazoleacetica acid, and imidazolelactic acid by mixed ruminal bacteria, protozoa, and their mixture in vitro.
    Wadud S; Onodera R; Or-Rashid MM
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):219-25. PubMed ID: 11330718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. alpha-epsilon Diaminopimelic acid (DAPA) in a sheep rumen infused with a synthetic diet of sugars and urea: evidence for degradation of bacteria.
    Demeyer D; Todorov N; van Nevel C; Vets J
    Z Tierphysiol Tierernahr Futtermittelkd; 1982; 48(1-2):21-32. PubMed ID: 7136308
    [No Abstract]   [Full Text] [Related]  

  • 10. Tryptophan biosynthesis and production of other related compounds from indole and L-serine by mixed ruminal bacteria, protozoa, and their mixture in vitro.
    Mohammed N; Onodera R; Khan RI
    Curr Microbiol; 1999 Oct; 39(4):200-4. PubMed ID: 10486055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro.
    Mohammed N; Onodera R; Or-Rashid MM
    Amino Acids; 2003; 24(1-2):73-80. PubMed ID: 12624737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid.
    Devillard E; McIntosh FM; Newbold CJ; Wallace RJ
    Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell wall growth of Bacillus megaterium: cytoplasmic radioactivity after pulse-labeling with tritiated diaminopimelic acid.
    de Chastellier C; Frehel C; Ryter A
    J Bacteriol; 1975 Sep; 123(3):1197-207. PubMed ID: 808533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of radiolabeled monensin and lasalocid to ruminal microorganisms and feed.
    Chow JM; Van Kessel JA; Russell JB
    J Anim Sci; 1994 Jun; 72(6):1630-5. PubMed ID: 8071190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidoglycan turnover during growth of a Bacillus megaterium Dap- Lys- mutant.
    Frehel C; Ryter A
    J Bacteriol; 1979 Feb; 137(2):947-55. PubMed ID: 106045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolism of methionine and threonine in vitro by mixed ruminal bacteria and protozoa.
    Or-Rashid MM; Onodera R; Wadud S; Oshiro S; Okada T
    Amino Acids; 2001 Dec; 21(4):383-91. PubMed ID: 11858697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of diet on amino and nucleic acids of rumen bacteria and protozoa.
    Arambel MJ; Bartley EE; Dufva GS; Nagaraja TG; Dayton AD
    J Dairy Sci; 1982 Nov; 65(11):2095-101. PubMed ID: 6185549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro.
    Hino T; Russell JB
    J Anim Sci; 1987 Jan; 64(1):261-70. PubMed ID: 3818489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in the uptake and metabolism of peptides and amino acids by mixed ruminal bacteria in vitro.
    Armstead IP; Ling JR
    Appl Environ Microbiol; 1993 Oct; 59(10):3360-6. PubMed ID: 8250559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of 2-aminoethylphosphonic acid in feeds, ruminal bacteria and duodenal digesta from defaunated sheep.
    Ankrah P; Loerch SC; Dehority BA
    J Anim Sci; 1989 Apr; 67(4):1061-9. PubMed ID: 2715111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.