These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24957607)

  • 1. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function.
    Khan F; Daniëls MA; Folkers GE; Boelens R; Saqlan Naqvi SM; van Ingen H
    Nucleic Acids Res; 2014 Jul; 42(13):8705-18. PubMed ID: 24957607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response.
    Tripet BP; Mason KE; Eilers BJ; Burns J; Powell P; Fischer AM; Copié V
    Biochemistry; 2014 Dec; 53(50):7945-60. PubMed ID: 25495582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features important for the RNA chaperone activity of zinc finger-containing glycine-rich RNA-binding proteins from wheat (Triticum avestivum) and rice (Oryza sativa).
    Xu T; Han JH; Kang H
    Phytochemistry; 2013 Oct; 94():28-35. PubMed ID: 23787154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTBP1/RBP1, a Saccharomyces cerevisiae protein which binds to T-rich single-stranded DNA containing the 11-bp core sequence of autonomously replicating sequence, is a poly(deoxypyrimidine)-binding protein.
    Ikeda M; Arai K; Masai H
    Eur J Biochem; 1996 May; 238(1):38-47. PubMed ID: 8665950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic Expression of Plant RNA Chaperone Offering Multiple Stress Tolerance in E. coli.
    Jabeen B; Naqvi SM; Mahmood T; Sultana T; Arif M; Khan F
    Mol Biotechnol; 2017 Mar; 59(2-3):66-72. PubMed ID: 28138902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic survey of RNA recognition motif (RRM) containing RNA binding proteins from barley (Hordeum vulgare ssp. vulgare).
    Mahalingam R; Walling JG
    Genomics; 2020 Mar; 112(2):1829-1839. PubMed ID: 31669702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum.
    Lee MO; Kim KP; Kim BG; Hahn JS; Hong CB
    Mol Cells; 2009 Jan; 27(1):47-54. PubMed ID: 19214433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization and expression analysis of a glycine-rich RNA-binding protein gene from Malus hupehensis Rehd.
    Wang S; Wang R; Liang D; Ma F; Shu H
    Mol Biol Rep; 2012 Apr; 39(4):4145-53. PubMed ID: 21779801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A family of RRM-type RNA-binding proteins specific to plant mitochondria.
    Vermel M; Guermann B; Delage L; Grienenberger JM; Maréchal-Drouard L; Gualberto JM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5866-71. PubMed ID: 11972043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs.
    Xu RM; Jokhan L; Cheng X; Mayeda A; Krainer AR
    Structure; 1997 Apr; 5(4):559-70. PubMed ID: 9115444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins.
    Pal A; Levy Y
    PLoS Comput Biol; 2019 Apr; 15(4):e1006768. PubMed ID: 30933978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues.
    Lewinski M; Hallmann A; Staiger D
    Mol Genet Genomics; 2016 Apr; 291(2):763-73. PubMed ID: 26589419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of Plant Glycine-Rich RNA-Binding Proteins in Development and Stress Responses.
    Ma L; Cheng K; Li J; Deng Z; Zhang C; Zhu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into TDP-43 in nucleic-acid binding and domain interactions.
    Kuo PH; Doudeva LG; Wang YT; Shen CK; Yuan HS
    Nucleic Acids Res; 2009 Apr; 37(6):1799-808. PubMed ID: 19174564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.
    Armas P; Nasif S; Calcaterra NB
    J Cell Biochem; 2008 Feb; 103(3):1013-36. PubMed ID: 17661353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a cDNA encoding a novel type of RNA-binding protein in tobacco: its expression and nucleic acid-binding properties.
    Hirose T; Sugita M; Sugiura M
    Mol Gen Genet; 1994 Aug; 244(4):360-6. PubMed ID: 8078461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets.
    Scheiba RM; de Opakua AI; Díaz-Quintana A; Cruz-Gallardo I; Martínez-Cruz LA; Martínez-Chantar ML; Blanco FJ; Díaz-Moreno I
    RNA Biol; 2014; 11(10):1250-61. PubMed ID: 25584704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process.
    Kwak KJ; Park SJ; Han JH; Kim MK; Oh SH; Han YS; Kang H
    J Exp Bot; 2011 Jul; 62(11):4003-11. PubMed ID: 21511907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif.
    Schröder K; Graumann P; Schnuchel A; Holak TA; Marahiel MA
    Mol Microbiol; 1995 May; 16(4):699-708. PubMed ID: 7476164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for RNA recognition by the C-terminal RRM domain of human RBM45.
    Chen X; Wei Q; Yang Z; Chen X; Guo S; Jiang M; Wang M
    J Biol Chem; 2024 Sep; 300(9):107640. PubMed ID: 39122006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.