BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24957630)

  • 21. Application accuracy of computed tomography-based, image-guided navigation of temporal bone.
    Pillai P; Sammet S; Ammirati M
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):326-32; discussion 332-3. PubMed ID: 18981839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases.
    Lefranc M; Capel C; Pruvot-Occean AS; Fichten A; Desenclos C; Toussaint P; Le Gars D; Peltier J
    J Neurosurg; 2015 Feb; 122(2):342-52. PubMed ID: 25380111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autonomous neuro-registration for robot-based neurosurgery.
    Kaushik A; Dwarakanath TA; Bhutani G
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1807-1817. PubMed ID: 30027303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques.
    Brandmeir NJ; Savaliya S; Rohatgi P; Sather M
    J Robot Surg; 2018 Mar; 12(1):157-163. PubMed ID: 28484885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing Fiducial-Based and Intraoperative Computed Tomography-Based Registration for Frameless Stereotactic Brain Biopsy.
    Saß B; Pojskic M; Bopp M; Nimsky C; Carl B
    Stereotact Funct Neurosurg; 2021; 99(1):79-89. PubMed ID: 32992321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraoperative acquisition of three-dimensional imaging for frameless stereotactic guidance during transsphenoidal pituitary surgery using the Arcadis Orbic System.
    Fox WC; Wawrzyniak S; Chandler WF
    J Neurosurg; 2008 Apr; 108(4):746-50. PubMed ID: 18377254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a novel frameless skull-mounted ball-joint guide array for use in image-guided neurosurgery.
    Sudhakar V; Mahmoodi A; Bringas JR; Naidoo J; Kells A; Samaranch L; Fiandaca MS; Bankiewicz KS
    J Neurosurg; 2019 Feb; 132(2):595-604. PubMed ID: 30771782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Augmented Reality in Stereotactic Neurosurgery: Current Status and Issues.
    Satoh M; Nakajima T; Watanabe E; Kawai K
    Neurol Med Chir (Tokyo); 2023 Apr; 63(4):137-140. PubMed ID: 36682793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual pointer projection of the central sulcus to the outside of the skull using frameless neuronavigation -- accuracy and applications.
    Reinges MH; Krings T; Nguyen HH; Küker W; Spetzger U; Rohde V; Hütter BO; Thron A; Gilsbach JM
    Acta Neurochir (Wien); 2000; 142(12):1385-9; discussion 1389-90. PubMed ID: 11214633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system.
    Liu Y; Song Z; Wang M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):319-325. PubMed ID: 29094615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accuracy of registration methods in frameless stereotaxis.
    Helm PA; Eckel TS
    Comput Aided Surg; 1998; 3(2):51-6. PubMed ID: 9784952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Navigation-Supported Stereotaxy by Applying Intraoperative Computed Tomography.
    Carl B; Bopp M; Gjorgjevski M; Nimsky C
    World Neurosurg; 2018 Oct; 118():e584-e592. PubMed ID: 29990609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Comparative Study of Fiducial-Based and Fiducial-Less Registration Utilizing the O-Arm.
    Toms J; Martin S; Sima AP; Chung A; Docef A; Holloway KL
    Stereotact Funct Neurosurg; 2019; 97(2):83-93. PubMed ID: 31085935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution templates of the fiducial points in image-guided neurosurgery.
    Wang M; Song Z
    Neurosurgery; 2010 Mar; 66(3 Suppl Operative):143-50; discussion 150-1. PubMed ID: 20124925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How precise are oral splints for frameless stereotaxy in guided ear, nose, throat, and maxillofacial surgery: a cadaver study.
    Nilius M; Nilius MH
    Eur Radiol Exp; 2021 Jun; 5(1):27. PubMed ID: 34195878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A region-based anatomical landmark configuration for sinus surgery using image guided navigation system: a phantom-study.
    Ahmadian A; Fathi Kazerooni A; Mohagheghi S; Amini Khoiy K; Sadr Hosseini M
    J Craniomaxillofac Surg; 2014 Sep; 42(6):816-24. PubMed ID: 24461706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frameless neuronavigation based only on 3D digital subtraction angiography using surface-based facial registration.
    Stidd DA; Wewel J; Ghods AJ; Munich S; Serici A; Keigher KM; Theessen H; Moftakhar R; Lopes DK
    J Neurosurg; 2014 Sep; 121(3):745-50. PubMed ID: 25036204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronavigation and surgery of intracerebral tumours.
    Willems PW; van der Sprenkel JW; Tulleken CA; Viergever MA; Taphoorn MJ
    J Neurol; 2006 Sep; 253(9):1123-36. PubMed ID: 16988793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Image-to-patient registration techniques in head surgery.
    Eggers G; Mühling J; Marmulla R
    Int J Oral Maxillofac Surg; 2006 Dec; 35(12):1081-95. PubMed ID: 17095191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy of Novel Computed Tomography-Guided Frameless Stereotactic Drilling and Catheter System in Human Cadavers.
    Sankey EW; Butler E; Sampson JH
    World Neurosurg; 2017 Oct; 106():757-763. PubMed ID: 28754645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.