These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 24957638)
1. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes. Ollitrault D; Legendre F; Drougard C; Briand M; Benateau H; Goux D; Chajra H; Poulain L; Hartmann D; Vivien D; Shridhar V; Baldi A; Mallein-Gerin F; Boumediene K; Demoor M; Galera P Tissue Eng Part C Methods; 2015 Feb; 21(2):133-47. PubMed ID: 24957638 [TBL] [Abstract][Full Text] [Related]
2. RNA Interference and BMP-2 Stimulation Allows Equine Chondrocytes Redifferentiation in 3D-Hypoxia Cell Culture Model: Application for Matrix-Induced Autologous Chondrocyte Implantation. Rakic R; Bourdon B; Hervieu M; Branly T; Legendre F; Saulnier N; Audigié F; Maddens S; Demoor M; Galera P Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28837082 [TBL] [Abstract][Full Text] [Related]
3. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Legendre F; Ollitrault D; Hervieu M; Baugé C; Maneix L; Goux D; Chajra H; Mallein-Gerin F; Boumediene K; Galera P; Demoor M Tissue Eng Part C Methods; 2013 Jul; 19(7):550-67. PubMed ID: 23270543 [TBL] [Abstract][Full Text] [Related]
4. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211 [TBL] [Abstract][Full Text] [Related]
5. Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-β1, hypoxia, and COL1A1/HtrA1 siRNAs. Legendre F; Ollitrault D; Gomez-Leduc T; Bouyoucef M; Hervieu M; Gruchy N; Mallein-Gerin F; Leclercq S; Demoor M; Galéra P Sci Rep; 2017 Jun; 7(1):3406. PubMed ID: 28611369 [TBL] [Abstract][Full Text] [Related]
6. Control of collagen production in mouse chondrocytes by using a combination of bone morphogenetic protein-2 and small interfering RNA targeting Col1a1 for hydrogel-based tissue-engineered cartilage. Perrier-Groult E; Pasdeloup M; Malbouyres M; Galéra P; Mallein-Gerin F Tissue Eng Part C Methods; 2013 Aug; 19(8):652-64. PubMed ID: 23311625 [TBL] [Abstract][Full Text] [Related]
7. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index. Branly T; Contentin R; Desancé M; Jacquel T; Bertoni L; Jacquet S; Mallein-Gerin F; Denoix JM; Audigié F; Demoor M; Galéra P Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29389887 [TBL] [Abstract][Full Text] [Related]
8. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability. Krawczak DA; Westendorf JJ; Carlson CS; Lewis JL Tissue Eng Part A; 2009 Jun; 15(6):1247-55. PubMed ID: 18950256 [TBL] [Abstract][Full Text] [Related]
9. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges. Claus S; Mayer N; Aubert-Foucher E; Chajra H; Perrier-Groult E; Lafont J; Piperno M; Damour O; Mallein-Gerin F Tissue Eng Part C Methods; 2012 Feb; 18(2):104-12. PubMed ID: 21933021 [TBL] [Abstract][Full Text] [Related]
10. Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges. Gómez-Leduc T; Desancé M; Hervieu M; Legendre F; Ollitrault D; de Vienne C; Herlicoviez M; Galéra P; Demoor M Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28885597 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering. Contentin R; Demoor M; Concari M; Desancé M; Audigié F; Branly T; Galéra P Stem Cell Rev Rep; 2020 Feb; 16(1):126-143. PubMed ID: 31745710 [TBL] [Abstract][Full Text] [Related]
12. Redifferentiated Chondrocytes in Fibrin Gel for the Repair of Articular Cartilage Lesions. Bianchi VJ; Lee A; Anderson J; Parreno J; Theodoropoulos J; Backstein D; Kandel R Am J Sports Med; 2019 Aug; 47(10):2348-2359. PubMed ID: 31265317 [TBL] [Abstract][Full Text] [Related]
13. Hypoxia potentiates the BMP-2 driven COL2A1 stimulation in human articular chondrocytes via p38 MAPK. Lafont JE; Poujade FA; Pasdeloup M; Neyret P; Mallein-Gerin F Osteoarthritis Cartilage; 2016 May; 24(5):856-67. PubMed ID: 26708156 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of multiple genes during articular chondrocyte redifferentiation. Haudenschild DR; McPherson JM; Tubo R; Binette F Anat Rec; 2001 May; 263(1):91-8. PubMed ID: 11331975 [TBL] [Abstract][Full Text] [Related]
15. Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. Xu L; Golshirazian I; Asbury BJ; Li Y Histol Histopathol; 2014 May; 29(5):609-18. PubMed ID: 24135912 [TBL] [Abstract][Full Text] [Related]
17. Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Dell'Accio F; De Bari C; Luyten FP Arthritis Rheum; 2001 Jul; 44(7):1608-19. PubMed ID: 11465712 [TBL] [Abstract][Full Text] [Related]
18. Role of HTRA1, a serine protease, in the progression of articular cartilage degeneration. Polur I; Lee PL; Servais JM; Xu L; Li Y Histol Histopathol; 2010 May; 25(5):599-608. PubMed ID: 20238298 [TBL] [Abstract][Full Text] [Related]
19. Extracellular matrix derived from chondrocytes promotes rapid expansion of human primary chondrocytes in vitro with reduced dedifferentiation. Mao Y; Block T; Singh-Varma A; Sheldrake A; Leeth R; Griffey S; Kohn J Acta Biomater; 2019 Feb; 85():75-83. PubMed ID: 30528605 [TBL] [Abstract][Full Text] [Related]
20. Effects of cell phenotype and seeding density on the chondrogenic capacity of human osteoarthritic chondrocytes in type I collagen scaffolds. Cao C; Zhang Y; Ye Y; Sun T J Orthop Surg Res; 2020 Mar; 15(1):120. PubMed ID: 32228637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]