These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 24957700)
1. The impact of microgravity-based proteomics research. Grimm D; Pietsch J; Wehland M; Richter P; Strauch SM; Lebert M; Magnusson NE; Wise P; Bauer J Expert Rev Proteomics; 2014 Aug; 11(4):465-76. PubMed ID: 24957700 [TBL] [Abstract][Full Text] [Related]
2. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. Kamal KY; Hemmersbach R; Medina FJ; Herranz R Life Sci Space Res (Amst); 2015 Apr; 5():47-52. PubMed ID: 26177849 [TBL] [Abstract][Full Text] [Related]
3. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Zupanska AK; Denison FC; Ferl RJ; Paul AL Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370 [TBL] [Abstract][Full Text] [Related]
4. Proteomics and genomics of microgravity. Nichols HL; Zhang N; Wen X Physiol Genomics; 2006 Aug; 26(3):163-71. PubMed ID: 16705019 [TBL] [Abstract][Full Text] [Related]
5. Effects of microgravity on osteoblast growth. Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639 [TBL] [Abstract][Full Text] [Related]
6. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions. Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674 [TBL] [Abstract][Full Text] [Related]
7. Growth of Endothelial Cells in Space and in Simulated Microgravity - a Comparison on the Secretory Level. Krüger M; Pietsch J; Bauer J; Kopp S; Carvalho DTO; Baatout S; Moreels M; Melnik D; Wehland M; Egli M; Jayashree S; Kobberø SD; Corydon TJ; Nebuloni S; Gass S; Evert M; Infanger M; Grimm D Cell Physiol Biochem; 2019; 52(5):1039-1060. PubMed ID: 30977987 [TBL] [Abstract][Full Text] [Related]
8. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Abdelfattah F; Schulz H; Wehland M; Corydon TJ; Sahana J; Kraus A; Krüger M; González-Torres LF; Cortés-Sánchez JL; Wise PM; Mushunuri A; Hemmersbach R; Liemersdorf C; Infanger M; Grimm D Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337501 [TBL] [Abstract][Full Text] [Related]
9. Distortion of homeostatic signaling proteins by simulated microgravity in rat hypothalamus: A(16) O/(18) O-labeled comparative integrated proteomic approach. Iqbal J; Li W; Hasan M; Juan Li Y; Ullah K; Yun W; Awan U; Qing H; Deng Y Proteomics; 2014 Feb; 14(2-3):262-73. PubMed ID: 24323493 [TBL] [Abstract][Full Text] [Related]
10. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Herranz R; Manzano AI; van Loon JJ; Christianen PC; Medina FJ Astrobiology; 2013 Mar; 13(3):217-24. PubMed ID: 23510084 [TBL] [Abstract][Full Text] [Related]
11. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity. Zhang Y; Wang H; Lai C; Wang L; Deng Y Astrobiology; 2013 Feb; 13(2):143-50. PubMed ID: 23421552 [TBL] [Abstract][Full Text] [Related]
12. Differential expression of specific cellular defense proteins in rat hypothalamus under simulated microgravity induced conditions: comparative proteomics. Iqbal J; Li W; Hasan M; Liu K; Awan U; Saeed Y; Zhang Y; Muhammad Khan A; Shah A; Qing H; Deng Y Proteomics; 2014 Jun; 14(11):1424-33. PubMed ID: 24648329 [TBL] [Abstract][Full Text] [Related]
13. Use of Reduced Gravity Simulators for Plant Biological Studies. Herranz R; Valbuena MA; Manzano A; Kamal KY; Villacampa A; Ciska M; van Loon JJWA; Medina FJ Methods Mol Biol; 2022; 2368():241-265. PubMed ID: 34647260 [TBL] [Abstract][Full Text] [Related]
14. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Herranz R; Benguría A; Laván DA; López-Vidriero I; Gasset G; Javier Medina F; van Loon JJ; Marco R Mol Ecol; 2010 Oct; 19(19):4255-64. PubMed ID: 20819157 [TBL] [Abstract][Full Text] [Related]
15. Changes in gene expression and signal transduction in microgravity. Hughes-Fulford M J Gravit Physiol; 2001 Jul; 8(1):P1-4. PubMed ID: 12638602 [TBL] [Abstract][Full Text] [Related]
16. Antibody binding in altered gravity: implications for immunosorbent assay during space flight. Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989 [TBL] [Abstract][Full Text] [Related]
17. Induction of hypoxic root metabolism results from physical limitations in O2 bioavailability in microgravity. Liao J; Liu G; Monje O; Stutte GW; Porterfield DM Adv Space Res; 2004; 34(7):1579-84. PubMed ID: 15880895 [TBL] [Abstract][Full Text] [Related]
18. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Aubry-Hivet D; Nziengui H; Rapp K; Oliveira O; Paponov IA; Li Y; Hauslage J; Vagt N; Braun M; Ditengou FA; Dovzhenko A; Palme K Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():129-41. PubMed ID: 24373012 [TBL] [Abstract][Full Text] [Related]
19. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data. Convertino VA J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376 [TBL] [Abstract][Full Text] [Related]
20. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]