These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 24957791)
1. Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros. Kassahun W; Neyens T; Molenberghs G; Faes C; Verbeke G Stat Med; 2014 Nov; 33(25):4402-19. PubMed ID: 24957791 [TBL] [Abstract][Full Text] [Related]
2. Models for Zero-Inflated and Overdispersed Correlated Count Data: An Application to Cigarette Use. Pittman B; Buta E; Garrison K; Gueorguieva R Nicotine Tob Res; 2023 Apr; 25(5):996-1003. PubMed ID: 36318799 [TBL] [Abstract][Full Text] [Related]
3. Local influence diagnostics for hierarchical count data models with overdispersion and excess zeros. Rakhmawati TW; Molenberghs G; Verbeke G; Faes C Biom J; 2016 Nov; 58(6):1390-1408. PubMed ID: 27356111 [TBL] [Abstract][Full Text] [Related]
4. Hurdle models for multilevel zero-inflated data via h-likelihood. Molas M; Lesaffre E Stat Med; 2010 Dec; 29(30):3294-310. PubMed ID: 21170922 [TBL] [Abstract][Full Text] [Related]
5. A Marginalized Zero-Inflated Negative Binomial Model for Spatial Data: Modeling COVID-19 Deaths in Georgia. Mutiso F; Pearce JL; Benjamin-Neelon SE; Mueller NT; Li H; Neelon B Biom J; 2024 Jul; 66(5):e202300182. PubMed ID: 39001709 [TBL] [Abstract][Full Text] [Related]
6. Matching the Statistical Model to the Research Question for Dental Caries Indices with Many Zero Counts. Preisser JS; Long DL; Stamm JW Caries Res; 2017; 51(3):198-208. PubMed ID: 28291962 [TBL] [Abstract][Full Text] [Related]
7. Models for analyzing zero-inflated and overdispersed count data: an application to cigarette and marijuana use. Pittman B; Buta E; Krishnan-Sarin S; O'Malley SS; Liss T; Gueorguieva R Nicotine Tob Res; 2018 Apr; 22(8):1390-8. PubMed ID: 29912423 [TBL] [Abstract][Full Text] [Related]
8. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035 [TBL] [Abstract][Full Text] [Related]
9. Zero adjusted models with applications to analysing helminths count data. Chipeta MG; Ngwira BM; Simoonga C; Kazembe LN BMC Res Notes; 2014 Nov; 7():856. PubMed ID: 25430726 [TBL] [Abstract][Full Text] [Related]
10. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data. Rose CE; Martin SW; Wannemuehler KA; Plikaytis BD J Biopharm Stat; 2006; 16(4):463-81. PubMed ID: 16892908 [TBL] [Abstract][Full Text] [Related]
11. Semiparametric models for multilevel overdispersed count data with extra zeros. Mahmoodi M; Moghimbeigi A; Mohammad K; Faradmal J Stat Methods Med Res; 2018 Apr; 27(4):1187-1201. PubMed ID: 27389670 [TBL] [Abstract][Full Text] [Related]
12. Multilevel modeling in single-case studies with zero-inflated and overdispersed count data. Li H; Luo W; Baek E Behav Res Methods; 2024 Apr; 56(4):2765-2781. PubMed ID: 38383801 [TBL] [Abstract][Full Text] [Related]
13. Comments on "Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros". Inan G Stat Med; 2018 Jan; 37(2):324-326. PubMed ID: 29250839 [No Abstract] [Full Text] [Related]
14. Response to comments on "Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros". Molenberghs G; Poveda AF; Kassahun W; Neyens T; Faes C; Verbeke G Stat Med; 2018 May; 37(11):1942-1946. PubMed ID: 29732614 [No Abstract] [Full Text] [Related]
15. A comparison of statistical methods for modeling count data with an application to hospital length of stay. Fernandez GA; Vatcheva KP BMC Med Res Methodol; 2022 Aug; 22(1):211. PubMed ID: 35927612 [TBL] [Abstract][Full Text] [Related]
16. Modeling excess zeros and heterogeneity in count data from a complex survey design with application to the demographic health survey in sub-Saharan Africa. Dai L; Sweat MD; Gebregziabher M Stat Methods Med Res; 2018 Jan; 27(1):208-220. PubMed ID: 28034169 [TBL] [Abstract][Full Text] [Related]
17. Modelling count data with excessive zeros: the need for class prediction in zero-inflated models and the issue of data generation in choosing between zero-inflated and generic mixture models for dental caries data. Gilthorpe MS; Frydenberg M; Cheng Y; Baelum V Stat Med; 2009 Dec; 28(28):3539-53. PubMed ID: 19902494 [TBL] [Abstract][Full Text] [Related]
18. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts. Majumdar A; Gries C Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981 [TBL] [Abstract][Full Text] [Related]
19. Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data. Xu L; Paterson AD; Turpin W; Xu W PLoS One; 2015; 10(7):e0129606. PubMed ID: 26148172 [TBL] [Abstract][Full Text] [Related]
20. A Marginalized Zero-inflated Poisson Regression Model with Random Effects. Long DL; Preisser JS; Herring AH; Golin CE J R Stat Soc Ser C Appl Stat; 2015 Nov; 64(5):815-830. PubMed ID: 26635421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]