These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24957992)

  • 1. Peak detection method evaluation for ion mobility spectrometry by using machine learning approaches.
    Hauschild AC; Kopczynski D; D'Addario M; Baumbach JI; Rahmann S; Baumbach J
    Metabolites; 2013 Apr; 3(2):277-93. PubMed ID: 24957992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational methods for metabolomic data analysis of ion mobility spectrometry data-reviewing the state of the art.
    Hauschild AC; Schneider T; Pauling J; Rupp K; Jang M; Baumbach JI; Baumbach J
    Metabolites; 2012 Oct; 2(4):733-55. PubMed ID: 24957760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detailed comparison of analysis processes for MCC-IMS data in disease classification-Automated methods can replace manual peak annotations.
    Horsch S; Kopczynski D; Kuthe E; Baumbach JI; Rahmann S; Rahnenführer J
    PLoS One; 2017; 12(9):e0184321. PubMed ID: 28910313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An online peak extraction algorithm for ion mobility spectrometry data.
    Kopczynski D; Rahmann S
    Algorithms Mol Biol; 2015; 10():17. PubMed ID: 26157473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated statistical learning of metabolic ion mobility spectrometry profiles for pulmonary disease identification.
    Hauschild AC; Baumbach JI; Baumbach J
    Genet Mol Res; 2012 Aug; 11(3):2733-44. PubMed ID: 22869082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modular computational framework for automated peak extraction from ion mobility spectra.
    D'Addario M; Kopczynski D; Baumbach JI; Rahmann S
    BMC Bioinformatics; 2014 Jan; 15():25. PubMed ID: 24450533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Targeted Screening Approaches for Profiling of Volatile Organic Compounds Based on Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) and Machine Learning.
    Capitain C; Weller P
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative clinical database and diagnostics platform for biomarker identification and analysis in ion mobility spectra of human exhaled air.
    Schneider T; Hauschild AC; Baumbach JI; Baumbach J
    J Integr Bioinform; 2013 Apr; 10(2):218. PubMed ID: 23545212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data size reduction strategy for the classification of breath and air samples using multicapillary column-ion mobility spectrometry.
    Szymańska E; Brodrick E; Williams M; Davies AN; van Manen HJ; Buydens LM
    Anal Chem; 2015 Jan; 87(2):869-75. PubMed ID: 25519893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current breathomics--a review on data pre-processing techniques and machine learning in metabolomics breath analysis.
    Smolinska A; Hauschild AC; Fijten RR; Dallinga JW; Baumbach J; van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027105. PubMed ID: 24713999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High perfomance liquid chromatography in pharmaceutical analyses.
    Nikolin B; Imamović B; Medanhodzić-Vuk S; Sober M
    Bosn J Basic Med Sci; 2004 May; 4(2):5-9. PubMed ID: 15629016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.
    Causon TJ; Hann S
    J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peak assignment in multi-capillary column-ion mobility spectrometry using comparative studies with gas chromatography-mass spectrometry for VOC analysis.
    Jünger M; Bödeker B; Baumbach JI
    Anal Bioanal Chem; 2010 Jan; 396(1):471-82. PubMed ID: 19838827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PB-Net: Automatic peak integration by sequential deep learning for multiple reaction monitoring.
    Wu Z; Serie D; Xu G; Zou J
    J Proteomics; 2020 Jul; 223():103820. PubMed ID: 32416316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid in vitro differentiation of bacteria by ion mobility spectrometry.
    Steppert I; Schönfelder J; Schultz C; Kuhlmeier D
    Appl Microbiol Biotechnol; 2021 May; 105(10):4297-4307. PubMed ID: 33974116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
    Caballo M; Boone JM; Mann R; Sechopoulos I
    Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study.
    Westhoff M; Litterst P; Freitag L; Urfer W; Bader S; Baumbach JI
    Thorax; 2009 Sep; 64(9):744-8. PubMed ID: 19158121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-capillary column-ion mobility spectrometry of volatile metabolites emitted by Saccharomyces cerevisiae.
    Halbfeld C; Ebert BE; Blank LM
    Metabolites; 2014 Sep; 4(3):751-74. PubMed ID: 25197771
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.