These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 24958045)
1. Utilizing Three-Dimensional Printing Technology to Assess the Feasibility of High-Fidelity Synthetic Ventricular Septal Defect Models for Simulation in Medical Education. Costello JP; Olivieri LJ; Krieger A; Thabit O; Marshall MB; Yoo SJ; Kim PC; Jonas RA; Nath DS World J Pediatr Congenit Heart Surg; 2014 Jul; 5(3):421-6. PubMed ID: 24958045 [TBL] [Abstract][Full Text] [Related]
2. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Costello JP; Olivieri LJ; Su L; Krieger A; Alfares F; Thabit O; Marshall MB; Yoo SJ; Kim PC; Jonas RA; Nath DS Congenit Heart Dis; 2015; 10(2):185-90. PubMed ID: 25385353 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study. Su W; Xiao Y; He S; Huang P; Deng X BMC Med Educ; 2018 Aug; 18(1):178. PubMed ID: 30068323 [TBL] [Abstract][Full Text] [Related]
4. Clinical Application and Multidisciplinary Assessment of Three Dimensional Printing in Double Outlet Right Ventricle With Remote Ventricular Septal Defect. Garekar S; Bharati A; Chokhandre M; Mali S; Trivedi B; Changela VP; Solanki N; Gaikwad S; Agarwal V World J Pediatr Congenit Heart Surg; 2016 May; 7(3):344-50. PubMed ID: 27142402 [TBL] [Abstract][Full Text] [Related]
5. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects. White SC; Sedler J; Jones TW; Seckeler M Congenit Heart Dis; 2018 Nov; 13(6):1045-1049. PubMed ID: 30230245 [TBL] [Abstract][Full Text] [Related]
6. The usefulness of 3D printed heart models for medical student education in congenital heart disease. Karsenty C; Guitarte A; Dulac Y; Briot J; Hascoet S; Vincent R; Delepaul B; Vignaud P; Djeddai C; Hadeed K; Acar P BMC Med Educ; 2021 Sep; 21(1):480. PubMed ID: 34496844 [TBL] [Abstract][Full Text] [Related]
7. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use. Perens G; Chyu J; McHenry K; Yoshida T; Finn JP World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685 [TBL] [Abstract][Full Text] [Related]
8. Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education. Smith CF; Tollemache N; Covill D; Johnston M Anat Sci Educ; 2018 Jan; 11(1):44-53. PubMed ID: 28753247 [TBL] [Abstract][Full Text] [Related]
9. Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity. Smerling J; Marboe CC; Lefkowitch JH; Pavlicova M; Bacha E; Einstein AJ; Naka Y; Glickstein J; Farooqi KM Pediatr Cardiol; 2019 Aug; 40(6):1258-1265. PubMed ID: 31240370 [TBL] [Abstract][Full Text] [Related]
10. 3D printing and modeling of congenital heart defects: A technical review. Townsend K; Pietila T Birth Defects Res; 2018 Aug; 110(13):1091-1097. PubMed ID: 30063112 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. Olivieri LJ; Krieger A; Loke YH; Nath DS; Kim PC; Sable CA J Am Soc Echocardiogr; 2015 Apr; 28(4):392-7. PubMed ID: 25660668 [TBL] [Abstract][Full Text] [Related]
13. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions? Bhatla P; Tretter JT; Ludomirsky A; Argilla M; Latson LA; Chakravarti S; Barker PC; Yoo SJ; McElhinney DB; Wake N; Mosca RS Pediatr Cardiol; 2017 Jan; 38(1):103-114. PubMed ID: 27837304 [TBL] [Abstract][Full Text] [Related]
14. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Preece D; Williams SB; Lam R; Weller R Anat Sci Educ; 2013; 6(4):216-24. PubMed ID: 23349117 [TBL] [Abstract][Full Text] [Related]
15. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study. Kong X; Nie L; Zhang H; Wang Z; Ye Q; Tang L; Li J; Huang W J Surg Educ; 2016; 73(2):264-9. PubMed ID: 26868314 [TBL] [Abstract][Full Text] [Related]
16. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070 [TBL] [Abstract][Full Text] [Related]
17. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. Loke YH; Harahsheh AS; Krieger A; Olivieri LJ BMC Med Educ; 2017 Mar; 17(1):54. PubMed ID: 28284205 [TBL] [Abstract][Full Text] [Related]
18. Hands-on surgical training of congenital heart surgery using 3-dimensional print models. Yoo SJ; Spray T; Austin EH; Yun TJ; van Arsdell GS J Thorac Cardiovasc Surg; 2017 Jun; 153(6):1530-1540. PubMed ID: 28268011 [TBL] [Abstract][Full Text] [Related]
19. Implementation of 3D Printing in Medical Care for Preoperative Planning of Complex Ventricular Septal Defect. Mousa MS; Ford J; Matar F; Hazelton TR; Decker S J Radiol Case Rep; 2021 Nov; 15(11):17-29. PubMed ID: 35516972 [TBL] [Abstract][Full Text] [Related]
20. A three-dimensional printed model in preoperative consent for ventricular septal defect repair. Deng X; He S; Huang P; Luo J; Yang G; Zhou B; Xiao Y J Cardiothorac Surg; 2021 Aug; 16(1):229. PubMed ID: 34380540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]