These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 24958160)

  • 1. Implementing a strand of a scalable fault-tolerant quantum computing fabric.
    Chow JM; Gambetta JM; Magesan E; Abraham DW; Cross AW; Johnson BR; Masluk NA; Ryan CA; Smolin JA; Srinivasan SJ; Steffen M
    Nat Commun; 2014 Jun; 5():4015. PubMed ID: 24958160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits.
    Córcoles AD; Magesan E; Srinivasan SJ; Cross AW; Steffen M; Gambetta JM; Chow JM
    Nat Commun; 2015 Apr; 6():6979. PubMed ID: 25923200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconducting quantum circuits at the surface code threshold for fault tolerance.
    Barends R; Kelly J; Megrant A; Veitia A; Sank D; Jeffrey E; White TC; Mutus J; Fowler AG; Campbell B; Chen Y; Chen Z; Chiaro B; Dunsworth A; Neill C; O'Malley P; Roushan P; Vainsencher A; Wenner J; Korotkov AN; Cleland AN; Martinis JM
    Nature; 2014 Apr; 508(7497):500-3. PubMed ID: 24759412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic entanglement of superconducting qubits by parity measurement and feedback.
    Ristè D; Dukalski M; Watson CA; de Lange G; Tiggelman MJ; Blanter YM; Lehnert KW; Schouten RN; DiCarlo L
    Nature; 2013 Oct; 502(7471):350-4. PubMed ID: 24132292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.
    Chow JM; Gambetta JM; Córcoles AD; Merkel ST; Smolin JA; Rigetti C; Poletto S; Keefe GA; Rothwell MB; Rozen JR; Ketchen MB; Steffen M
    Phys Rev Lett; 2012 Aug; 109(6):060501. PubMed ID: 23006254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realization of quantum error correction.
    Chiaverini J; Leibfried D; Schaetz T; Barrett MD; Blakestad RB; Britton J; Itano WM; Jost JD; Knill E; Langer C; Ozeri R; Wineland DJ
    Nature; 2004 Dec; 432(7017):602-5. PubMed ID: 15577904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-qubit logic gate in silicon.
    Veldhorst M; Yang CH; Hwang JC; Huang W; Dehollain JP; Muhonen JT; Simmons S; Laucht A; Hudson FE; Itoh KM; Morello A; Dzurak AS
    Nature; 2015 Oct; 526(7573):410-4. PubMed ID: 26436453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault-tolerant operation of a logical qubit in a diamond quantum processor.
    Abobeih MH; Wang Y; Randall J; Loenen SJH; Bradley CE; Markham M; Twitchen DJ; Terhal BM; Taminiau TH
    Nature; 2022 Jun; 606(7916):884-889. PubMed ID: 35512730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fault-Tolerant Logical Gates in the IBM Quantum Experience.
    Harper R; Flammia ST
    Phys Rev Lett; 2019 Mar; 122(8):080504. PubMed ID: 30932564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A programmable two-qubit quantum processor in silicon.
    Watson TF; Philips SGJ; Kawakami E; Ward DR; Scarlino P; Veldhorst M; Savage DE; Lagally MG; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LMK
    Nature; 2018 Mar; 555(7698):633-637. PubMed ID: 29443962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits.
    Gong M; Yuan X; Wang S; Wu Y; Zhao Y; Zha C; Li S; Zhang Z; Zhao Q; Liu Y; Liang F; Lin J; Xu Y; Deng H; Rong H; Lu H; Benjamin SC; Peng CZ; Ma X; Chen YA; Zhu X; Pan JW
    Natl Sci Rev; 2022 Jan; 9(1):nwab011. PubMed ID: 35070323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits.
    Plantenberg JH; de Groot PC; Harmans CJ; Mooij JE
    Nature; 2007 Jun; 447(7146):836-9. PubMed ID: 17568742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logical quantum processor based on reconfigurable atom arrays.
    Bluvstein D; Evered SJ; Geim AA; Li SH; Zhou H; Manovitz T; Ebadi S; Cain M; Kalinowski M; Hangleiter D; Bonilla Ataides JP; Maskara N; Cong I; Gao X; Sales Rodriguez P; Karolyshyn T; Semeghini G; Gullans MJ; Greiner M; Vuletić V; Lukin MD
    Nature; 2024 Feb; 626(7997):58-65. PubMed ID: 38056497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entangling logical qubits with lattice surgery.
    Erhard A; Poulsen Nautrup H; Meth M; Postler L; Stricker R; Stadler M; Negnevitsky V; Ringbauer M; Schindler P; Briegel HJ; Blatt R; Friis N; Monz T
    Nature; 2021 Jan; 589(7841):220-224. PubMed ID: 33442044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum computations on a topologically encoded qubit.
    Nigg D; Müller M; Martinez EA; Schindler P; Hennrich M; Monz T; Martin-Delgado MA; Blatt R
    Science; 2014 Jul; 345(6194):302-5. PubMed ID: 24925911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture.
    Takita M; Córcoles AD; Magesan E; Abdo B; Brink M; Cross A; Chow JM; Gambetta JM
    Phys Rev Lett; 2016 Nov; 117(21):210505. PubMed ID: 27911561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A trapped-ion-based quantum byte with 10(-5) next-neighbour cross-talk.
    Piltz C; Sriarunothai T; Varón AF; Wunderlich C
    Nat Commun; 2014 Aug; 5():4679. PubMed ID: 25134465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-threshold and low-overhead fault-tolerant quantum memory.
    Bravyi S; Cross AW; Gambetta JM; Maslov D; Rall P; Yoder TJ
    Nature; 2024 Mar; 627(8005):778-782. PubMed ID: 38538939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the entanglement of two superconducting qubits via state tomography.
    Steffen M; Ansmann M; Bialczak RC; Katz N; Lucero E; McDermott R; Neeley M; Weig EM; Cleland AN; Martinis JM
    Science; 2006 Sep; 313(5792):1423-5. PubMed ID: 16960003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting Grid-Bus Surface Code Architecture for Hole-Spin Qubits.
    Nigg SE; Fuhrer A; Loss D
    Phys Rev Lett; 2017 Apr; 118(14):147701. PubMed ID: 28430480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.