BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24958220)

  • 1. Dependence of DPPH radical scavenging activity of dietary flavonoid quercetin on reaction environment.
    Sak K
    Mini Rev Med Chem; 2014; 14(6):494-504. PubMed ID: 24958220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization and study of antioxidant activity of quercetin-magnesium complex.
    Ghosh N; Chakraborty T; Mallick S; Mana S; Singha D; Ghosh B; Roy S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():807-13. PubMed ID: 26172468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of quercetin with copper ions: complexation, oxidation and reactivity towards radicals.
    Pękal A; Biesaga M; Pyrzynska K
    Biometals; 2011 Feb; 24(1):41-9. PubMed ID: 20835752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and antioxidant evaluation of novel silybin analogues.
    Yang L; Gong J; Wang F; Zhang Y; Wang Y; Hao X; Wu X; Bai H; Stöckigt J; Zhao Y
    J Enzyme Inhib Med Chem; 2006 Aug; 21(4):399-404. PubMed ID: 17059172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes.
    Rezaei-Sadabady R; Eidi A; Zarghami N; Barzegar A
    Artif Cells Nanomed Biotechnol; 2016; 44(1):128-34. PubMed ID: 24959911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Detection of antioxidative capacity of bamboo leaf extract by scavenging organic free radical DPPH].
    Guo XF; Yue YD; Tang F; Wang J; Yao X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1578-82. PubMed ID: 18844164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein.
    Yamamoto N; Moon JH; Tsushida T; Nagao A; Terao J
    Arch Biochem Biophys; 1999 Dec; 372(2):347-54. PubMed ID: 10600174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Commercial dietary antioxidant supplements assayed for their antioxidant activity by different methodologies.
    Dávalos A; Gómez-Cordovés C; Bartolomé B
    J Agric Food Chem; 2003 Apr; 51(9):2512-9. PubMed ID: 12696929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubilisation of a 2,2-diphenyl-1-picrylhydrazyl radical in water by β-cyclodextrin to evaluate the radical-scavenging activity of antioxidants in aqueous media.
    Nakanishi I; Ohkubo K; Imai K; Kamibayashi M; Yoshihashi Y; Matsumoto K; Fukuhara K; Terada K; Itoh S; Ozawa T; Fukuzumi S
    Chem Commun (Camb); 2015 May; 51(39):8311-4. PubMed ID: 25877460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, Antiproliferative Activity and Radical Scavenging Ability of 5-
    Lo S; Leung E; Fedrizzi B; Barker D
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing antioxidant effectiveness of natural and synthetic free radical scavengers in thermally-oxidized lard using DPPH method.
    Yeo JD; Jeong MK; Park CU; Lee J
    J Food Sci; 2010 Apr; 75(3):C258-62. PubMed ID: 20492276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use and Abuse of the DPPH(•) Radical.
    Foti MC
    J Agric Food Chem; 2015 Oct; 63(40):8765-76. PubMed ID: 26390267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bovine serum albumin significantly improves the DPPH free radical scavenging potential of dietary polyphenols and gallic acids.
    Cao H; Chen X; Yamamoto K
    Anticancer Agents Med Chem; 2012 Oct; 12(8):940-8. PubMed ID: 22292770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Functional Groups and Sugar Composition of Quercetin Derivatives on Their Radical Scavenging Properties.
    Kato K; Ninomiya M; Tanaka K; Koketsu M
    J Nat Prod; 2016 Jul; 79(7):1808-14. PubMed ID: 27314621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals.
    Sawai Y; Moon JH; Sakata K; Watanabe N
    J Agric Food Chem; 2005 May; 53(9):3598-604. PubMed ID: 15853407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starch-quercetin conjugate by radical grafting: synthesis and biological characterization.
    Cirillo G; Puoci F; Iemma F; Curcio M; Parisi OI; Spizzirri UG; Altimari I; Picci N
    Pharm Dev Technol; 2012; 17(4):466-76. PubMed ID: 21226550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidative effects and percutaneous absorption of five polyphenols.
    Alonso C; Rubio L; Touriño S; Martí M; Barba C; Fernández-Campos F; Coderch L; Parra JL
    Free Radic Biol Med; 2014 Oct; 75():149-55. PubMed ID: 25041725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA.
    Johnson MK; Loo G
    Mutat Res; 2000 Apr; 459(3):211-8. PubMed ID: 10812333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of High-Performance Liquid Chromatography with Diode Array Detection to Simultaneous Analysis of Reference Antioxidants and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) in Free Radical Scavenging Test.
    Tatarczak-Michalewska M; Flieger J
    Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants.
    Boudier A; Tournebize J; Bartosz G; El Hani S; Bengueddour R; Sapin-Minet A; Leroy P
    Anal Chim Acta; 2012 Jan; 711():97-106. PubMed ID: 22152802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.