BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 24958247)

  • 1. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.
    Lee JH; Kim YG; Cho MH; Lee J
    Microbiol Res; 2014 Dec; 169(12):888-96. PubMed ID: 24958247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles.
    García-Lara B; Saucedo-Mora MÁ; Roldán-Sánchez JA; Pérez-Eretza B; Ramasamy M; Lee J; Coria-Jimenez R; Tapia M; Varela-Guerrero V; García-Contreras R
    Lett Appl Microbiol; 2015 Sep; 61(3):299-305. PubMed ID: 26084709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa
    Van Laar TA; Esani S; Birges TJ; Hazen B; Thomas JM; Rawat M
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29669887
    [No Abstract]   [Full Text] [Related]  

  • 4. PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes.
    Attila C; Ueda A; Wood TK
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):293-307. PubMed ID: 18157527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Dual Inhibition Concept within Looped Autoregulatory Systems toward Antivirulence Agents against Pseudomonas aeruginosa Infections.
    Thomann A; de Mello Martins AG; Brengel C; Empting M; Hartmann RW
    ACS Chem Biol; 2016 May; 11(5):1279-86. PubMed ID: 26882081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms.
    Sarkisova S; Patrauchan MA; Berglund D; Nivens DE; Franklin MJ
    J Bacteriol; 2005 Jul; 187(13):4327-37. PubMed ID: 15968041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of Zinc Oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression.
    Abdelraheem WM; Mohamed ES
    J Infect Dev Ctries; 2021 Jun; 15(6):826-832. PubMed ID: 34242193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of pyocyanin abolishment caused by
    Dong L; Pang J; Wang X; Zhang Y; Li G; Hu X; Yang X; Lu CD; Li C; You X
    Virulence; 2019 Dec; 11(1):57-67. PubMed ID: 31885331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa.
    Ryan RP; Lucey J; O'Donovan K; McCarthy Y; Yang L; Tolker-Nielsen T; Dow JM
    Environ Microbiol; 2009 May; 11(5):1126-36. PubMed ID: 19170727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation.
    Rampioni G; Schuster M; Greenberg EP; Zennaro E; Leoni L
    FEMS Microbiol Lett; 2009 Dec; 301(2):210-7. PubMed ID: 19878323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pseudomonas aeruginosa PAO1 Two-Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-Induced Virulence Factor Production through Its Regulatory Targets CarO and CarP.
    Guragain M; King MM; Williamson KS; Pérez-Osorio AC; Akiyama T; Khanam S; Patrauchan MA; Franklin MJ
    J Bacteriol; 2016 Jan; 198(6):951-63. PubMed ID: 26755627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence.
    Lee JH; Cho MH; Lee J
    Environ Microbiol; 2011 Jan; 13(1):62-73. PubMed ID: 20649646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates.
    Karatuna O; Yagci A
    Clin Microbiol Infect; 2010 Dec; 16(12):1770-5. PubMed ID: 20132256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of virulence related traits of pqs mutants by Pseudomonas quinolone signal through membrane vesicles.
    Bala A; Kumar L; Chhibber S; Harjai K
    J Basic Microbiol; 2015 May; 55(5):566-78. PubMed ID: 25283438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of pyocyanin biosynthesis by transcriptional factor sigma38 in Pseudomonas aeruginosa PAO1].
    Miao J; Chi X; Wang Y; Feng Z; Xue W; Huang R; Zhang H; Tian L; Zhang H; Zhai J; Ge Y
    Wei Sheng Wu Xue Bao; 2017 Feb; 57(2):229-39. PubMed ID: 29750486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa.
    Ali SG; Ansari MA; Khan HM; Jalal M; Mahdi AA; Cameotra SS
    J Basic Microbiol; 2017 Mar; 57(3):193-203. PubMed ID: 27874198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response.
    Palma M; Zurita J; Ferreras JA; Worgall S; Larone DH; Shi L; Campagne F; Quadri LE
    Infect Immun; 2005 May; 73(5):2958-66. PubMed ID: 15845502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa.
    Mikkelsen H; Bond NJ; Skindersoe ME; Givskov M; Lilley KS; Welch M
    Microbiology (Reading); 2009 Mar; 155(Pt 3):687-698. PubMed ID: 19246740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production.
    Liang H; Li L; Dong Z; Surette MG; Duan K
    J Bacteriol; 2008 Sep; 190(18):6217-27. PubMed ID: 18641136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable xylanase inhibits and disassembles Pseudomonas aeruginosa biofilms.
    Lee JH; Kim YG; Lee J
    Biofouling; 2018 Mar; 34(3):346-356. PubMed ID: 29616824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.