BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24958248)

  • 21. Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula.
    de Jesus HE; Peixoto RS; Cury JC; van Elsas JD; Rosado AS
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10815-27. PubMed ID: 26286513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Will the endophytic fungus Phomopsis liquidambari increase N-mineralization in maize soil?
    Elsharif NA; El Awamie MW; Matuoog N
    PLoS One; 2023; 18(11):e0293281. PubMed ID: 37956133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid.
    Xie XG; Huang CY; Fu WQ; Dai CC
    Fungal Biol; 2016 Mar; 120(3):402-13. PubMed ID: 26895869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of augmented soil system containing biphenyl with Dyellaginsengisoli LA-4.
    Zhao LJ; Jia YH; Zhou JT; Li A; Chen JF
    J Hazard Mater; 2010 Jul; 179(1-3):729-34. PubMed ID: 20381236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms.
    Ibarrolaza A; Coppotelli BM; Del Panno MT; Donati ER; Morelli IS
    Biodegradation; 2009 Feb; 20(1):95-107. PubMed ID: 18604587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil.
    Cosgrove L; McGeechan PL; Handley PS; Robson GD
    Appl Environ Microbiol; 2010 Feb; 76(3):810-9. PubMed ID: 19948849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria-Bertani medium or bioaugmented with a petroleum-degrading bacterium, Pseudomonas aeruginosa strain WatG.
    Ueno A; Ito Y; Yamamoto Y; Yumoto I; Okuyama H
    J Basic Microbiol; 2006; 46(4):310-7. PubMed ID: 16847835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Endophytic Fungus Phomopsis liquidambari Increases Nodulation and N
    Xie XG; Fu WQ; Zhang FM; Shi XM; Zeng YT; Li H; Zhang W; Dai CC
    Microb Ecol; 2017 Aug; 74(2):427-440. PubMed ID: 28168354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of petrochemical sludge concentrations on microbial communities during soil bioremediation.
    Del Panno MT; Morelli IS; Engelen B; Berthe-Corti L
    FEMS Microbiol Ecol; 2005 Jul; 53(2):305-16. PubMed ID: 16329950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil.
    Aburto-Medina A; Adetutu EM; Aleer S; Weber J; Patil SS; Sheppard PJ; Ball AS; Juhasz AL
    Biodegradation; 2012 Nov; 23(6):813-22. PubMed ID: 22684213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community.
    Gomes NC; Kosheleva IA; Abraham WR; Smalla K
    FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Priming effects of the endophytic fungus Phomopsis liquidambari on soil mineral N transformations.
    Chen Y; Ren CG; Yang B; Peng Y; Dai CC
    Microb Ecol; 2013 Jan; 65(1):161-70. PubMed ID: 22864852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbiological study on bioremediation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting.
    Chen Y; Ma S; Li Y; Yan M; Zeng G; Zhang J; Zhang J; Tan X
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9709-9718. PubMed ID: 27576494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community.
    Inoue D; Yamazaki Y; Tsutsui H; Sei K; Soda S; Fujita M; Ike M
    Biodegradation; 2012 Apr; 23(2):263-76. PubMed ID: 21850504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo.
    Fu W; Xu M; Sun K; Hu L; Cao W; Dai C; Jia Y
    Chemosphere; 2018 Jul; 203():160-169. PubMed ID: 29614409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioaugmentation of polyethylene succinate-contaminated soil with Pseudomonas sp. AKS2 results in increased microbial activity and better polymer degradation.
    Tribedi P; Sil AK
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1318-26. PubMed ID: 22806353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioremediation of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1 and the changes of indigenous microbial population and N-cycling function genes during the bioremediation process.
    Yang L; Li X; Li X; Su Z; Zhang C; Zhang H
    J Hazard Mater; 2014 Jun; 274():314-21. PubMed ID: 24794985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy.
    Xu Y; Sun GD; Jin JH; Liu Y; Luo M; Zhong ZP; Liu ZP
    J Hazard Mater; 2014 Jan; 264():430-8. PubMed ID: 24321347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments.
    Ros M; Rodríguez I; García C; Hernández T
    Bioresour Technol; 2010 Sep; 101(18):6916-23. PubMed ID: 20413304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable remediation--the application of bioremediated soil for use in the degradation of TNT chips.
    Erkelens M; Adetutu EM; Taha M; Tudararo-Aherobo L; Antiabong J; Provatas A; Ball AS
    J Environ Manage; 2012 Nov; 110():69-76. PubMed ID: 22728982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.