These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24958507)

  • 1. Hodge-Kodaira decomposition of evolving neural networks.
    Miura K; Aoki T
    Neural Netw; 2015 Feb; 62():20-4. PubMed ID: 24958507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tackling learning intractability through topological organization and regulation of cortical networks.
    Thangavelautham J; D'Eleuterio GM
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):552-64. PubMed ID: 24805039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks and chaos: construction, evaluation of chaotic networks, and prediction of chaos with multilayer feedforward networks.
    Bahi JM; Couchot JF; Guyeux C; Salomon M
    Chaos; 2012 Mar; 22(1):013122. PubMed ID: 22462998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducing chaos by variable structure recurrent neural networks.
    Felix RA; Sanchez EN; Chen G
    IEEE Trans Neural Netw; 2004 Nov; 15(6):1450-7. PubMed ID: 15565772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold control of chaotic neural network.
    He G; Shrimali MD; Aihara K
    Neural Netw; 2008; 21(2-3):114-21. PubMed ID: 18178377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global exponential periodicity and global exponential stability of a class of recurrent neural networks with various activation functions and time-varying delays.
    Chen B; Wang J
    Neural Netw; 2007 Dec; 20(10):1067-80. PubMed ID: 17881187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved conditions for global exponential stability of recurrent neural networks with time-varying delays.
    Zeng Z; Wang J
    IEEE Trans Neural Netw; 2006 May; 17(3):623-35. PubMed ID: 16722168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear dynamics and chaos in fractional-order neural networks.
    Kaslik E; Sivasundaram S
    Neural Netw; 2012 Aug; 32():245-56. PubMed ID: 22386788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK; Kori H; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Almost periodic dynamics of a class of delayed neural networks with discontinuous activations.
    Lu W; Chen T
    Neural Comput; 2008 Apr; 20(4):1065-90. PubMed ID: 18085989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of two modeling approaches in neural networks.
    Xu ZB; Qiao H; Peng J; Zhang B
    Neural Netw; 2004 Jan; 17(1):73-85. PubMed ID: 14690709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks.
    Molter C; Salihoglu U; Bersini H
    Neural Comput; 2007 Jan; 19(1):80-110. PubMed ID: 17134318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
    Fründ I; Ohl FW; Herrmann CS
    Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.