These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24958619)

  • 1. Experimental Study of Membrane Fouling during Crossflow Microfiltration of Yeast and Bacteria Suspensions: Towards an Analysis at the Microscopic Level.
    Hassan IB; Ennouri M; Lafforgue C; Schmitz P; Ayadi A
    Membranes (Basel); 2013 May; 3(2):44-68. PubMed ID: 24958619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crossflow microfiltration of yeast suspensions in tubular filters.
    Redkar SG; Davis RH
    Biotechnol Prog; 1993; 9(6):625-34. PubMed ID: 7764351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast Cell Cake Characterization in Alcohol Solution for Efficient Microfiltration.
    Katagiri N; Tomimatsu K; Date K; Iritani E
    Membranes (Basel); 2021 Jan; 11(2):. PubMed ID: 33513956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Polypropylene and Ceramic Microfiltration Membranes Applied for Separation of 1,3-PD Fermentation Broths and
    Tomczak W; Gryta M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33435635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot-scale harvest of recombinant yeast employing microfiltration: a case study.
    Russotti G; Osawa AE; Sitrin RD; Buckland BC; Adams WR; Lee SS
    J Biotechnol; 1995 Oct; 42(3):235-46. PubMed ID: 7576542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane fouling by cell-protein mixtures: in situ characterisation using multi-photon microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Biotechnol Bioeng; 2007 Apr; 96(6):1083-91. PubMed ID: 16933334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of processing parameters on fouling resistances during microfiltration of red plum and watermelon juices: a comparative study.
    Nourbakhsh H; Alemi A; Emam-Djomeh Z; Mirsaeedghazi H
    J Food Sci Technol; 2014 Jan; 51(1):168-72. PubMed ID: 24426065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics.
    Ping Chu H; Li XY
    Biotechnol Bioeng; 2005 May; 90(3):323-31. PubMed ID: 15800862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfiltration of yeast suspensions with self-cleaning spiral vortices: possibilities for a new membrane module design.
    Mallubhotla H; Nunes E; Belfort G
    Biotechnol Bioeng; 1995 Nov; 48(4):375-85. PubMed ID: 18623498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the influence of slurry concentration on Saccharomyces cerevisiae cake porosity and resistance during microfiltration.
    Mota M; Flickinger MC
    Biotechnol Prog; 2012; 28(6):1534-41. PubMed ID: 23011664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient and stationary operating conditions on performance of lactic acid bacteria crossflow microfiltration.
    Boyaval P; Lavenant C; Gésan G; Daufin G
    Biotechnol Bioeng; 1996 Jan; 49(1):78-86. PubMed ID: 18623556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing.
    Kuberkar V; Czekaj P; Davis R
    Biotechnol Bioeng; 1998 Oct; 60(1):77-87. PubMed ID: 10099408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the roles of pretreatment methods for model suspensions in the membrane fouling process: The case of yeast and kaolin.
    Mu S; Sun D; Wang J; Zhang H
    Chemosphere; 2021 Jun; 273():129621. PubMed ID: 33493819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane Fouling Mechanisms in Combined Microfiltration-Coagulation of Algal Rich Water Applying Ceramic Membranes.
    Park K; Kim P; Kim HG; Kim J
    Membranes (Basel); 2019 Feb; 9(2):. PubMed ID: 30813378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting the performance of crossflow filtration of yeast cell suspension.
    Tanaka T; Kamimura R; Itoh K; Nakanishi K; Matsuno R
    Biotechnol Bioeng; 1993 Mar; 41(6):617-24. PubMed ID: 18609597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate block fractions and their effects on membrane fouling.
    Meng S; Liu Y
    Water Res; 2013 Nov; 47(17):6618-27. PubMed ID: 24070866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane.
    Zhang X; Fan L; Roddick FA
    Membranes (Basel); 2018 Feb; 8(1):. PubMed ID: 29389873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-phase bioconversion product recovery by microfiltration I. Steady state studies.
    Conrad PB; Lee SS
    Biotechnol Bioeng; 1998 Mar; 57(6):631-41. PubMed ID: 10099243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of ultra- and microfiltration in the presence and absence of secondary flow with polysaccharides, proteins, and yeast suspensions.
    Gehlert G; Luque S; Belfort G
    Biotechnol Prog; 1998; 14(6):931-42. PubMed ID: 9841658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.