BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24958895)

  • 21. More productive than maize in the Midwest: How does Miscanthus do it?
    Dohleman FG; Long SP
    Plant Physiol; 2009 Aug; 150(4):2104-15. PubMed ID: 19535474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress.
    Kong F; Deng Y; Zhou B; Wang G; Wang Y; Meng Q
    J Exp Bot; 2014 Jan; 65(1):143-58. PubMed ID: 24227338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cold acclimation of mesophyll conductance, bundle-sheath conductance and leakiness in Miscanthus × giganteus.
    Serrano-Romero EA; Cousins AB
    New Phytol; 2020 Jun; 226(6):1594-1606. PubMed ID: 32112409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants.
    Zhou J; Wang J; Shi K; Xia XJ; Zhou YH; Yu JQ
    Plant Physiol Biochem; 2012 Nov; 60():141-9. PubMed ID: 22935478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions.
    Chen YE; Ma J; Wu N; Su YQ; Zhang ZW; Yuan M; Zhang HY; Zeng XY; Yuan S
    Plant Physiol Biochem; 2018 Sep; 130():267-276. PubMed ID: 30032070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthetic Linear Electron Flow Drives CO
    Shimakawa G; Miyake C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass?
    Dohleman FG; Heaton EA; Leakey AD; Long SP
    Plant Cell Environ; 2009 Nov; 32(11):1525-37. PubMed ID: 19558624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deficiency of phytochrome B alleviates chilling-induced photoinhibition in rice.
    Yang JC; Li M; Xie XZ; Han GL; Sui N; Wang BS
    Am J Bot; 2013 Sep; 100(9):1860-70. PubMed ID: 24018854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.
    Savitch LV; Ivanov AG; Gudynaite-Savitch L; Huner NP; Simmonds J
    Plant Cell Physiol; 2011 Jun; 52(6):1042-54. PubMed ID: 21546369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chilling and freezing stress in live oaks (Quercus section Virentes): intra- and inter-specific variation in PS II sensitivity corresponds to latitude of origin.
    Cavender-Bares J
    Photosynth Res; 2007; 94(2-3):437-53. PubMed ID: 17805986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress.
    Li M; Ji L; Yang X; Meng Q; Guo S
    Plant Cell Rep; 2012 Nov; 31(11):1969-79. PubMed ID: 22790321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem.
    Wang M; Xie B; Fu Y; Dong C; Hui L; Guanghui L; Liu H
    Photosynth Res; 2015 Dec; 126(2-3):351-62. PubMed ID: 25869633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autumnal leaf senescence in Miscanthus × giganteus and leaf [N] differ by stand age.
    Boersma NN; Dohleman FG; Miguez FE; Heaton EA
    J Exp Bot; 2015 Jul; 66(14):4395-401. PubMed ID: 25873682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential transcription of plastome-encoded genes in the mesophyll and bundle-sheath chloroplasts of the monocotyledonous NADP-malic enzyme-type C4 plants maize and Sorghum.
    Kubicki A; Steinmüller K; Westhoff P
    Plant Mol Biol; 1994 Jul; 25(4):669-79. PubMed ID: 8061319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular foundations of chilling-tolerance of modern maize.
    Sobkowiak A; Jończyk M; Adamczyk J; Szczepanik J; Solecka D; Kuciara I; Hetmańczyk K; Trzcinska-Danielewicz J; Grzybowski M; Skoneczny M; Fronk J; Sowiński P
    BMC Genomics; 2016 Feb; 17():125. PubMed ID: 26897027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.
    Holá D; Kocová M; Rothová O; Wilhelmová N; Benesová M
    J Plant Physiol; 2007 Jul; 164(7):868-77. PubMed ID: 16884820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.).
    Fracheboud Y; Ribaut JM; Vargas M; Messmer R; Stamp P
    J Exp Bot; 2002 Sep; 53(376):1967-77. PubMed ID: 12177137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Similar photosynthetic but different yield responses of C
    Li S; Leakey ADB; Moller CA; Montes CM; Sacks EJ; Lee D; Ainsworth EA
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2313591120. PubMed ID: 37948586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclic electron flow and light partitioning between the two photosystems in leaves of plants with different functional types.
    Sagun JV; Badger MR; Chow WS; Ghannoum O
    Photosynth Res; 2019 Dec; 142(3):321-334. PubMed ID: 31520186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light-induced
    Chotewutmontri P; Barkan A
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21775-21784. PubMed ID: 32817480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.