These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 24959105)
1. Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method. Kim BJ; Kim JP; Park JS Nanoscale Res Lett; 2014; 9(1):236. PubMed ID: 24959105 [TBL] [Abstract][Full Text] [Related]
2. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates. Teng FY; Ting JM; Sharma SP; Liao KH Nanotechnology; 2008 Mar; 19(9):095607. PubMed ID: 21817682 [TBL] [Abstract][Full Text] [Related]
3. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes. Koji H; Kusumoto Y; Hatta A; Furuta H Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710 [TBL] [Abstract][Full Text] [Related]
4. Improved field emission performance of carbon nanotube by introducing copper metallic particles. Chen Y; Jiang H; Li D; Song H; Li Z; Sun X; Miao G; Zhao H Nanoscale Res Lett; 2011 Oct; 6(1):537. PubMed ID: 21968066 [TBL] [Abstract][Full Text] [Related]
5. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition. Zhang J; Wen Z; Zhao M; Li G; Dai C Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():992-1000. PubMed ID: 26478396 [TBL] [Abstract][Full Text] [Related]
6. Role of carbon nanotube interlayer in enhancing the electron field emission behavior of ultrananocrystalline diamond coated Si-tip arrays. Chang TH; Kunuku S; Kurian J; Manekkathodi A; Chen LJ; Leou KC; Tai NH; Lin IN ACS Appl Mater Interfaces; 2015 Apr; 7(14):7732-40. PubMed ID: 25793425 [TBL] [Abstract][Full Text] [Related]
7. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates. Sarkar A; Daniels-Race T Nanomaterials (Basel); 2013 May; 3(2):272-288. PubMed ID: 28348335 [TBL] [Abstract][Full Text] [Related]
8. Accelerating the Photocatalytic Degradation of Green Dye Pollutants by Using a New Coating Technique for Carbon Nanotubes with Nanolayered Structures and Nanocomposites. Saber O; Aljaafari A; Osama M; Alabdulgader H ChemistryOpen; 2018 Oct; 7(10):833-841. PubMed ID: 30338207 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of Emission Lifetime of CNT Emitters by Coating ZnO on the CNT Surface. Yoon SH; Chung DJ; Lee J; Park KC; Kang CJ; Yoon TS; Shim EL; Choi YJ J Nanosci Nanotechnol; 2015 Nov; 15(11):9030-3. PubMed ID: 26726637 [TBL] [Abstract][Full Text] [Related]
10. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device. Agarwal S; Yamini Sarada B; Kar KK Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034 [TBL] [Abstract][Full Text] [Related]
11. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer. Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050 [TBL] [Abstract][Full Text] [Related]
12. Residual Gas Adsorption and Desorption in the Field Emission of Titanium-Coated Carbon Nanotubes. Zhang H; Li D; Wurz P; Cheng Y; Wang Y; Wang C; Sun J; Li G; Fausch RG Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514335 [TBL] [Abstract][Full Text] [Related]
13. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites. Liu S; Li H; Su Y; Guo Q; Zhang L Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):805-811. PubMed ID: 27770958 [TBL] [Abstract][Full Text] [Related]
14. Alucone interlayers to minimize stress caused by thermal expansion mismatch between Al₂O₃ films and Teflon substrates. Jen SH; George SM; McLean RS; Carcia PF ACS Appl Mater Interfaces; 2013 Feb; 5(3):1165-73. PubMed ID: 23272996 [TBL] [Abstract][Full Text] [Related]
15. Electron field emission characteristics of different surface morphologies of ZnO nanostructures coated on carbon nanotubes. Li KW; Lian HB; Cai JH; Wang YT; Lee KY J Nanosci Nanotechnol; 2011 Dec; 11(12):11019-22. PubMed ID: 22409047 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the stability of electron field emission behavior and the related microplasma devices of carbon nanotubes by coating diamond films. Chang TH; Kunuku S; Hong YJ; Leou KC; Yew TR; Tai NH; Lin IN ACS Appl Mater Interfaces; 2014 Jul; 6(14):11589-97. PubMed ID: 24955653 [TBL] [Abstract][Full Text] [Related]
18. Growth Properties of Carbon Nanowalls on Nickel and Titanium Interlayers. Tran Thi M; Kwon S; Kang H; Kim JH; Yoon YK; Choi W Molecules; 2022 Jan; 27(2):. PubMed ID: 35056721 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the mechanical and thermal interface of copper films on carbon substrates modified by boron based interlayers. Schäfer D; Eisenmenger-Sittner C; Chirtoc M; Kijamnajsuk P; Kornfeind N; Hutter H; Neubauer E; Kitzmantel M Surf Coat Technol; 2011 Mar; 205(12-7):3729-3735. PubMed ID: 22241938 [TBL] [Abstract][Full Text] [Related]
20. Reducing and tuning the work function of field emission nanocomposite CNT/NiO cathodes by modifying the chemical composition of the oxide. Chumak MA; Popov EO; Filippov SV; Kolosko AG; Kirilenko DA; Bert NA; Zhizhin EV; Koroleva AV; Yezhov IS; Maximov MY Nanoscale; 2024 May; 16(21):10398-10413. PubMed ID: 38741471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]