These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24959116)

  • 21. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary.
    Wood S; Loudon A
    J Endocrinol; 2014 Aug; 222(2):R39-59. PubMed ID: 24891434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thyrotrophin in the pars tuberalis triggers photoperiodic response.
    Nakao N; Ono H; Yamamura T; Anraku T; Takagi T; Higashi K; Yasuo S; Katou Y; Kageyama S; Uno Y; Kasukawa T; Iigo M; Sharp PJ; Iwasawa A; Suzuki Y; Sugano S; Niimi T; Mizutani M; Namikawa T; Ebihara S; Ueda HR; Yoshimura T
    Nature; 2008 Mar; 452(7185):317-22. PubMed ID: 18354476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail.
    Ikegami K; Katou Y; Higashi K; Yoshimura T
    J Comp Neurol; 2009 Nov; 517(3):397-404. PubMed ID: 19760601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circuit-level analysis identifies target genes of sex steroids in ewe seasonal breeding.
    Lomet D; Druart X; Hazlerigg D; Beltramo M; Dardente H
    Mol Cell Endocrinol; 2020 Jul; 512():110825. PubMed ID: 32422398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus).
    Hanon EA; Routledge K; Dardente H; Masson-Pévet M; Morgan PJ; Hazlerigg DG
    J Neuroendocrinol; 2010 Jan; 22(1):51-5. PubMed ID: 19912472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3.
    Dardente H; Simonneaux V
    J Neuroendocrinol; 2022 May; 34(5):e13124. PubMed ID: 35384117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonality in tropical birds.
    Renthlei Z; Yatung S; Lalpekhlui R; Trivedi AK
    J Exp Zool A Ecol Integr Physiol; 2022 Dec; 337(9-10):952-966. PubMed ID: 35982509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights into ancient seasonal life timers.
    Hazlerigg D; Loudon A
    Curr Biol; 2008 Sep; 18(17):R795-R804. PubMed ID: 18786385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster.
    Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S
    J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discontinuity in the molecular neuroendocrine response to increasing daylengths in Ile-de-France ewes: Is transient Dio2 induction a key feature of circannual timing?
    Dardente H; Lomet D; Chesneau D; Pellicer-Rubio MT; Hazlerigg D
    J Neuroendocrinol; 2019 Aug; 31(8):e12775. PubMed ID: 31340078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuromedin U partly mimics thyroid-stimulating hormone and triggers Wnt/β-catenin signalling in the photoperiodic response of F344 rats.
    Helfer G; Ross AW; Morgan PJ
    J Neuroendocrinol; 2013 Dec; 25(12):1264-1272. PubMed ID: 24164054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoperiodic control of TSH-beta expression in the mammalian pars tuberalis has different impacts on the induction and suppression of the hypothalamo-hypopysial gonadal axis.
    Yasuo S; Yoshimura T; Ebihara S; Korf HW
    J Neuroendocrinol; 2010 Jan; 22(1):43-50. PubMed ID: 19912473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circannual variation in thyroid hormone deiodinases in a short-day breeder.
    Sáenz de Miera C; Hanon EA; Dardente H; Birnie M; Simonneaux V; Lincoln GA; Hazlerigg DG
    J Neuroendocrinol; 2013 Apr; 25(4):412-21. PubMed ID: 23282080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for RGS4 modulation of melatonin and thyrotrophin signalling pathways in the pars tuberalis.
    Dupré SM; Dardente H; Birnie MJ; Loudon AS; Lincoln GA; Hazlerigg DG
    J Neuroendocrinol; 2011 Aug; 23(8):725-32. PubMed ID: 21623959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Annual reproductive rhythms in mammals: mechanisms of light synchronization.
    Hastings MH; Herbert J; Martensz ND; Roberts AC
    Ann N Y Acad Sci; 1985; 453():182-204. PubMed ID: 2934016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin.
    Barrett P; Bolborea M
    J Pineal Res; 2012 May; 52(4):376-88. PubMed ID: 22017374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds.
    Nakane Y; Ikegami K; Ono H; Yamamoto N; Yoshida S; Hirunagi K; Ebihara S; Kubo Y; Yoshimura T
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15264-8. PubMed ID: 20679218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thyroid hormone and seasonal rhythmicity.
    Dardente H; Hazlerigg DG; Ebling FJ
    Front Endocrinol (Lausanne); 2014; 5():19. PubMed ID: 24616714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the photoperiodic signaling pathway regulating seasonal reproduction using the functional genomics approach.
    Ono H; Nakao N; Yoshimura T
    Gen Comp Endocrinol; 2009 Sep; 163(1-2):2-6. PubMed ID: 19084017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maternal photoperiodic programming enlightens the internal regulation of thyroid-hormone deiodinases in tanycytes.
    Sáenz de Miera C
    J Neuroendocrinol; 2019 Jan; 31(1):e12679. PubMed ID: 30585670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.