These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24959342)

  • 1. Heterochrony, modularity, and the functional evolution of the mechanosensory lateral line canal system of fishes.
    Bird NC; Webb JF
    Evodevo; 2014; 5():21. PubMed ID: 24959342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative development and evolution of two lateral line phenotypes in lake Malawi cichlids.
    Webb JF; Bird NC; Carter L; Dickson J
    J Morphol; 2014 Jun; 275(6):678-92, cover illustration. PubMed ID: 24469933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes.
    Becker EA; Bird NC; Webb JF
    J Morphol; 2016 Oct; 277(10):1273-91. PubMed ID: 27519545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti.
    Schwalbe MA; Bassett DK; Webb JF
    J Exp Biol; 2012 Jun; 215(Pt 12):2060-71. PubMed ID: 22623194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory basis for detection of benthic prey in two Lake Malawi cichlids.
    Schwalbe MA; Webb JF
    Zoology (Jena); 2014 Apr; 117(2):112-21. PubMed ID: 24369759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Silverjaw Minnow, Ericymba buccata: An Extraordinary Lateral Line System and Its Contribution to Prey Detection.
    Jones AE; Maia A; Conway KW; Webb JF
    Integr Comp Biol; 2024 Jul; ():. PubMed ID: 38992208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of light intensity on prey detection behavior in two Lake Malawi cichlids, Aulonocara stuartgranti and Tramitichromis sp.
    Schwalbe MA; Webb JF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Apr; 201(4):341-56. PubMed ID: 25721771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes.
    Webb JF
    Brain Behav Evol; 1989; 33(1):34-53. PubMed ID: 2655823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the supraorbital and mandibular lateral line canals in the cichlid, Archocentrus nigrofasciatus.
    Tarby ML; Webb JF
    J Morphol; 2003 Jan; 255(1):44-57. PubMed ID: 12420320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny and homology of cranial bones associated with lateral-line canals of the Senegal Bichir, Polypterus senegalus (Actinopterygii: Cladistii: Polypteriformes), with a discussion on the formation of lateral-line canal bones in fishes.
    Rizzato PP; Pospisilova A; Hilton EJ; Bockmann FA
    J Anat; 2020 Sep; 237(3):439-467. PubMed ID: 32285471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and development of the multiple lateral line canals on the trunk in two species of Hexagrammos (Scorpaeniformes, Hexagrammidae).
    Wonsettler AL; Webb JF
    J Morphol; 1997 Sep; 233(3):195-214. PubMed ID: 29852713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building blocks of a fish head: Developmental and variational modularity in a complex system.
    Lehoux C; Cloutier R
    J Exp Zool B Mol Dev Evol; 2015 Nov; 324(7):614-28. PubMed ID: 26227536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.
    Schwalbe MA; Sevey BJ; Webb JF
    J Exp Biol; 2016 Apr; 219(Pt 7):1050-9. PubMed ID: 27030780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology of the mechanosensory lateral line system in the Atlantic Stingray, Dasyatissabina: The mechanotactile hypothesis.
    Maruska KP; Tricas TC
    J Morphol; 1998 Oct; 238(1):1-22. PubMed ID: 29852662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes.
    Webb JF; Northcutt RG
    Brain Behav Evol; 1997; 50(3):139-51. PubMed ID: 9288414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postcranial heterochrony, modularity, integration and disparity in the prenatal ossification in bats (Chiroptera).
    López-Aguirre C; Hand SJ; Koyabu D; Son NT; Wilson LAB
    BMC Evol Biol; 2019 Mar; 19(1):75. PubMed ID: 30866800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish.
    Webb JF; Shirey JE
    Dev Dyn; 2003 Nov; 228(3):370-85. PubMed ID: 14579376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative morphology of the mechanosensory lateral line system in a clade of New Zealand triplefin fishes.
    Wellenreuther M; Brock M; Montgomery J; Clements KD
    Brain Behav Evol; 2010; 75(4):292-308. PubMed ID: 20693784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test of the mechanotactile hypothesis: neuromast morphology and response dynamics of mechanosensory lateral line primary afferents in the stingray.
    Maruska KP; Tricas TC
    J Exp Biol; 2004 Sep; 207(Pt 20):3463-76. PubMed ID: 15339942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: an SEM study.
    Webb JF
    J Morphol; 1989 Oct; 202(1):53-68. PubMed ID: 2810371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.