These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 2495940)
1. The uncoupling protein dimer can form a disulfide cross-link between the mobile C-terminal SH groups. Klingenberg M; Appel M Eur J Biochem; 1989 Mar; 180(1):123-31. PubMed ID: 2495940 [TBL] [Abstract][Full Text] [Related]
2. The formation of a disulfide cross-link between the two subunits demonstrates the dimeric structure of the mitochondrial oxoglutarate carrier. Bisaccia F; Zara V; Capobianco L; Iacobazzi V; Mazzeo M; Palmieri F Biochim Biophys Acta; 1996 Feb; 1292(2):281-88. PubMed ID: 8597574 [TBL] [Abstract][Full Text] [Related]
3. Identification of the pH sensor for nucleotide binding in the uncoupling protein from brown adipose tissue. Winkler E; Wachter E; Klingenberg M Biochemistry; 1997 Jan; 36(1):148-55. PubMed ID: 8993328 [TBL] [Abstract][Full Text] [Related]
4. Photoaffinity labeling of the nucleotide-binding site of the uncoupling protein from hamster brown adipose tissue. Winkler E; Klingenberg M Eur J Biochem; 1992 Jan; 203(1-2):295-304. PubMed ID: 1730236 [TBL] [Abstract][Full Text] [Related]
5. In the uncoupling protein from brown adipose tissue the C-terminus protrudes to the c-side of the membrane as shown by tryptic cleavage. Eckerskorn C; Klingenberg M FEBS Lett; 1987 Dec; 226(1):166-70. PubMed ID: 3691813 [TBL] [Abstract][Full Text] [Related]
6. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport. Winkler E; Klingenberg M Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400 [TBL] [Abstract][Full Text] [Related]
7. Two-stage nucleotide binding mechanism and its implications to H+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria. Huang SG; Klingenberg M Biochemistry; 1996 Jun; 35(24):7846-54. PubMed ID: 8672485 [TBL] [Abstract][Full Text] [Related]
8. H+ transport by uncoupling protein (UCP-1) is dependent on a histidine pair, absent in UCP-2 and UCP-3. Bienengraeber M; Echtay KS; Klingenberg M Biochemistry; 1998 Jan; 37(1):3-8. PubMed ID: 9453747 [TBL] [Abstract][Full Text] [Related]
9. Labeling of two different regions of the nucleotide binding site of the uncoupling protein from brown adipose tissue mitochondria with two ATP analogs. Mayinger P; Klingenberg M Biochemistry; 1992 Nov; 31(43):10536-43. PubMed ID: 1420170 [TBL] [Abstract][Full Text] [Related]
10. Mutagenesis of the uncoupling protein of brown adipose tissue. Neutralization Of E190 largely abolishes pH control of nucleotide binding. Echtay KS; Bienengraeber M; Klingenberg M Biochemistry; 1997 Jul; 36(27):8253-60. PubMed ID: 9204870 [TBL] [Abstract][Full Text] [Related]
11. The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide cross-linking. Bauer CM; Pinto LH; Cross TA; Lamb RA Virology; 1999 Feb; 254(1):196-209. PubMed ID: 9927586 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide binding to uncoupling protein. Mechanism of control by protonation. Klingenberg M Biochemistry; 1988 Jan; 27(2):781-91. PubMed ID: 3349063 [TBL] [Abstract][Full Text] [Related]
13. Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease. van Montfort BA; Schuurman-Wolters GK; Duurkens RH; Mensen R; Poolman B; Robillard GT J Biol Chem; 2001 Apr; 276(16):12756-63. PubMed ID: 11278734 [TBL] [Abstract][Full Text] [Related]
14. Cysteine residues are not essential for uncoupling protein function. Arechaga I; Raimbault S; Prieto S; Levi-Meyrueis C; Zaragoza P; Miroux B; Ricquier D; Bouillaud F; Rial E Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):693-700. PubMed ID: 8280067 [TBL] [Abstract][Full Text] [Related]
15. Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study. Huang SG; Klingenberg M Biochemistry; 1996 Dec; 35(51):16806-14. PubMed ID: 8988019 [TBL] [Abstract][Full Text] [Related]
16. Cross-linking of bovine mitochondrial H+-ATPase by copper--o-phenanthroline. Interaction of the oligomycin-sensitivity-conferring protein with a 24-kDa protein. Torok K; Joshi S Eur J Biochem; 1985 Nov; 153(1):155-9. PubMed ID: 2866096 [TBL] [Abstract][Full Text] [Related]
17. Translocation of loops regulates transport activity of mitochondrial ADP/ATP carrier deduced from formation of a specific intermolecular disulfide bridge catalyzed by copper-o-phenanthroline. Majima E; Ikawa K; Takeda M; Hashimoto M; Shinohara Y; Terada H J Biol Chem; 1995 Dec; 270(49):29548-54. PubMed ID: 7493997 [TBL] [Abstract][Full Text] [Related]
18. Substitutional mutations in the uncoupling protein-specific sequences of mitochondrial uncoupling protein UCP1 lead to the reduction of fatty acid-induced H+ uniport. Urbánková E; Hanák P; Skobisová E; Růzicka M; Jezek P Int J Biochem Cell Biol; 2003 Feb; 35(2):212-20. PubMed ID: 12479871 [TBL] [Abstract][Full Text] [Related]
19. Packing of the transmembrane helices of Na,K-ATPase: direct contact between beta-subunit and H8 segment of alpha-subunit revealed by oxidative cross-linking. Ivanov A; Zhao H; Modyanov NN Biochemistry; 2000 Aug; 39(32):9778-85. PubMed ID: 10933795 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Echtay KS; Winkler E; Bienengraeber M; Klingenberg M Biochemistry; 2000 Mar; 39(12):3311-7. PubMed ID: 10727223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]