These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24959621)

  • 1. A hierarchical framework approach for voice activity detection and speech enhancement.
    Zhang Y; Tang ZM; Li YP; Luo Y
    ScientificWorldJournal; 2014; 2014():723643. PubMed ID: 24959621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech enhancement with multichannel Wiener filter techniques in multimicrophone binaural hearing aids.
    Van den Bogaert T; Doclo S; Wouters J; Moonen M
    J Acoust Soc Am; 2009 Jan; 125(1):360-71. PubMed ID: 19173423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voice activity detection in noisy environments based on double-combined fourier transform and line fitting.
    Park J; Kim W; Han DK; Ko H
    ScientificWorldJournal; 2014; 2014():146040. PubMed ID: 25170520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel voice sensor for the detection of speech signals.
    Wang KC
    Sensors (Basel); 2013 Dec; 13(12):16533-50. PubMed ID: 24316566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical voice activity detection based on integrated bispectrum likelihood ratio tests for robust speech recognition.
    Ramírez J; Górriz JM; Segura JC
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2946-58. PubMed ID: 17550192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An effective cluster-based model for robust speech detection and speech recognition in noisy environments.
    Górriz JM; Ramírez J; Segura JC; Puntonet CG
    J Acoust Soc Am; 2006 Jul; 120(1):470-81. PubMed ID: 16875243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Voice Activity Detection and Deep Neural Networks with Hybrid Speech Feature Extraction for Deceptive Speech Detection.
    Mihalache S; Burileanu D
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Dual-Microphone Generalized Sidelobe Canceller Using a Bone-Conduction Sensor for Speech Enhancement.
    Zhou Y; Wang H; Chu Y; Liu H
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Voice Track multiband single-channel modified Wiener-filter noise reduction system for cochlear implants: patients' outcomes and subjective appraisal.
    Guevara N; Bozorg-Grayeli A; Bebear JP; Ardoint M; Saaï S; Gnansia D; Hoen M; Romanet P; Lavieille JP
    Int J Audiol; 2016 Aug; 55(8):431-8. PubMed ID: 27108635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Hearing Device Spectral Enhancement Driven by Non-Negative Sparse Coding-Based Residual Noise Reduction.
    Kim SM
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic switching between noise classification and speech enhancement for hearing aid devices.
    Saki F; Kehtarnavaz N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():736-739. PubMed ID: 28268433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Audio Content Classification Using Hybrid-Based SMD and Entropy-Based VAD.
    Wang KC
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech intelligibility improvements with hearing aids using bilateral and binaural adaptive multichannel Wiener filtering based noise reduction.
    Cornelis B; Moonen M; Wouters J
    J Acoust Soc Am; 2012 Jun; 131(6):4743-55. PubMed ID: 22712947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise-robust voice conversion with domain adversarial training.
    Du H; Xie L; Li H
    Neural Netw; 2022 Apr; 148():74-84. PubMed ID: 35104714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust estimation of speech in noisy backgrounds based on aspects of the auditory process.
    Hansen JH; Nandkumar S
    J Acoust Soc Am; 1995 Jun; 97(6):3833-49. PubMed ID: 7790661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subspace approach based on embedded prewhitening for voice activity detection.
    Kim DK; Chang JH
    J Acoust Soc Am; 2011 Nov; 130(5):EL304-10. PubMed ID: 22088032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive attention-driven speech enhancement for EEG-informed hearing prostheses.
    Das N; Van Eyndhoven S; Francart T; Bertrand A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():77-80. PubMed ID: 28268285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Modeling of Acoustic Feedback Path in Hearing Aids by Voice Activity Detector-Supervised Multiple Noise Injections.
    Mishra P; Tokgoz S; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3549-3552. PubMed ID: 30441145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noisy speech recognition using de-noised multiresolution analysis acoustic features.
    Chan CP; Ching PC; Lee T
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2567-74. PubMed ID: 11757946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.