These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24959743)

  • 1. The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain.
    Czech-Damal NU; Geiseler SJ; Hoff ML; Schliep R; Ramirez JM; Folkow LP; Burmester T
    Neuroscience; 2014 Sep; 275():374-83. PubMed ID: 24959743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata).
    Folkow LP; Ramirez JM; Ludvigsen S; Ramirez N; Blix AS
    Neurosci Lett; 2008 Dec; 446(2-3):147-50. PubMed ID: 18824079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain.
    Mitz SA; Reuss S; Folkow LP; Blix AS; Ramirez JM; Hankeln T; Burmester T
    Neuroscience; 2009 Oct; 163(2):552-60. PubMed ID: 19576963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An atypical distribution of lactate dehydrogenase isoenzymes in the hooded seal (Cystophora cristata) brain may reflect a biochemical adaptation to diving.
    Hoff ML; Fabrizius A; Folkow LP; Burmester T
    J Comp Physiol B; 2016 Apr; 186(3):373-86. PubMed ID: 26820264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When the brain goes diving: transcriptome analysis reveals a reduced aerobic energy metabolism and increased stress proteins in the seal brain.
    Fabrizius A; Hoff ML; Engler G; Folkow LP; Burmester T
    BMC Genomics; 2016 Aug; 17():583. PubMed ID: 27507242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata) Brain in Response to Hypoxia and Reoxygenation.
    Hoff ML; Fabrizius A; Czech-Damal NU; Folkow LP; Burmester T
    PLoS One; 2017; 12(1):e0169366. PubMed ID: 28046118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomes of Clusterin- and S100B-transfected neuronal cells elucidate protective mechanisms against hypoxia and oxidative stress in the hooded seal (Cystophora cristata) brain.
    Martens GA; Geßner C; Osterhof C; Hankeln T; Burmester T
    BMC Neurosci; 2022 Oct; 23(1):59. PubMed ID: 36243678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic transmission despite severe hypoxia in hippocampal slices of the deep-diving hooded seal.
    Geiseler SJ; Larson J; Folkow LP
    Neuroscience; 2016 Oct; 334():39-46. PubMed ID: 27480049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell Culture Experiments Reveal that High S100B and Clusterin Levels may Convey Hypoxia-tolerance to the Hooded Seal (Cystophora cristata) Brain.
    Geßner C; Stillger MN; Mölders N; Fabrizius A; Folkow LP; Burmester T
    Neuroscience; 2020 Dec; 451():226-239. PubMed ID: 33002555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroglobin of seals and whales: evidence for a divergent role in the diving brain.
    Schneuer M; Flachsbarth S; Czech-Damal NU; Folkow LP; Siebert U; Burmester T
    Neuroscience; 2012 Oct; 223():35-44. PubMed ID: 22864183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of glucose and lactate as substrates during NMDA-induced activation of hippocampal slices.
    Chih CP; He J; Sly TS; Roberts EL
    Brain Res; 2001 Mar; 893(1-2):143-54. PubMed ID: 11223002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous glycogen prevents Ca2+ overload and hypercontracture in harp seal myocardial cells during simulated ischemia.
    Henden T; Aasum E; Folkow L; Mjøs OD; Lathrop DA; Larsen TS
    J Mol Cell Cardiol; 2004 Jul; 37(1):43-50. PubMed ID: 15242734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hematology and serum chemistry of harp (Phoca groenlandica) and hooded seals (Cystophora cristata) during the breeding season, in the Gulf of St. Lawrence, Canada.
    Boily F; Beaudoin S; Measures LN
    J Wildl Dis; 2006 Jan; 42(1):115-32. PubMed ID: 16699154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of brain lipids and polar metabolites in the hypoxia tolerance of deep-diving pinnipeds.
    Martens GA; Geßner C; Folkow LP; Creydt M; Fischer M; Burmester T
    J Exp Biol; 2023 Apr; 226(8):. PubMed ID: 36970764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow intrinsic oscillations in thick neocortical slices of hypoxia tolerant deep diving seals.
    Ramirez JM; Folkow LP; Ludvigsen S; Ramirez PN; Blix AS
    Neuroscience; 2011 Mar; 177():35-42. PubMed ID: 21185914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential metabolic adaptation to acute and long-term hypoxia in rat primary cortical astrocytes.
    Véga C; R Sachleben L; Gozal D; Gozal E
    J Neurochem; 2006 May; 97(3):872-83. PubMed ID: 16573648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the contents of glycogen and lactate in the brain and blood during hypoxic preconditioning.
    Cui XY; Li L; An YY; Lu GW
    Sheng Li Xue Bao; 2001 Aug; 53(4):325-8. PubMed ID: 11930215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices.
    Cater HL; Chandratheva A; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2003 Dec; 87(6):1381-90. PubMed ID: 14713294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomes Suggest That Pinniped and Cetacean Brains Have a High Capacity for Aerobic Metabolism While Reducing Energy-Intensive Processes Such as Synaptic Transmission.
    Geßner C; Krüger A; Folkow LP; Fehrle W; Mikkelsen B; Burmester T
    Front Mol Neurosci; 2022; 15():877349. PubMed ID: 35615068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolysis regulates the induction of lactate utilization for synaptic potentials after hypoxia in the granule cell of guinea pig hippocampus.
    Takata T; Yang B; Sakurai T; Okada Y; Yokono K
    Neurosci Res; 2004 Dec; 50(4):467-74. PubMed ID: 15567484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.