These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 24959824)
1. Haptoglobin is required to prevent oxidative stress and muscle atrophy. Bertaggia E; Scabia G; Dalise S; Lo Verso F; Santini F; Vitti P; Chisari C; Sandri M; Maffei M PLoS One; 2014; 9(6):e100745. PubMed ID: 24959824 [TBL] [Abstract][Full Text] [Related]
2. P38α MAPK coordinates the activities of several metabolic pathways that together induce atrophy of denervated muscles. Odeh M; Tamir-Livne Y; Haas T; Bengal E FEBS J; 2020 Jan; 287(1):73-93. PubMed ID: 31545558 [TBL] [Abstract][Full Text] [Related]
3. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Sandri M Int J Biochem Cell Biol; 2013 Oct; 45(10):2121-9. PubMed ID: 23665154 [TBL] [Abstract][Full Text] [Related]
4. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis. Abrigo J; Rivera JC; Aravena J; Cabrera D; Simon F; Ezquer F; Ezquer M; Cabello-Verrugio C Oxid Med Cell Longev; 2016; 2016():9047821. PubMed ID: 27579157 [TBL] [Abstract][Full Text] [Related]
6. Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. Cunha TF; Bacurau AV; Moreira JB; Paixão NA; Campos JC; Ferreira JC; Leal ML; Negrão CE; Moriscot AS; Wisløff U; Brum PC PLoS One; 2012; 7(8):e41701. PubMed ID: 22870245 [TBL] [Abstract][Full Text] [Related]
7. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Furuya N; Ikeda S; Sato S; Soma S; Ezaki J; Oliva Trejo JA; Takeda-Ezaki M; Fujimura T; Arikawa-Hirasawa E; Tada N; Komatsu M; Tanaka K; Kominami E; Hattori N; Ueno T Autophagy; 2014 Apr; 10(4):631-41. PubMed ID: 24451648 [TBL] [Abstract][Full Text] [Related]
8. Cellular and molecular mechanisms of muscle atrophy. Bonaldo P; Sandri M Dis Model Mech; 2013 Jan; 6(1):25-39. PubMed ID: 23268536 [TBL] [Abstract][Full Text] [Related]
9. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. Doyle A; Zhang G; Abdel Fattah EA; Eissa NT; Li YP FASEB J; 2011 Jan; 25(1):99-110. PubMed ID: 20826541 [TBL] [Abstract][Full Text] [Related]
10. TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Paul PK; Kumar A Autophagy; 2011 May; 7(5):555-6. PubMed ID: 21412053 [TBL] [Abstract][Full Text] [Related]
11. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. Sandri M; Coletto L; Grumati P; Bonaldo P J Cell Sci; 2013 Dec; 126(Pt 23):5325-33. PubMed ID: 24293330 [TBL] [Abstract][Full Text] [Related]
12. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. McClung JM; Judge AR; Powers SK; Yan Z Am J Physiol Cell Physiol; 2010 Mar; 298(3):C542-9. PubMed ID: 19955483 [TBL] [Abstract][Full Text] [Related]