These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 24959838)

  • 21. The Stabilization Effect of CO
    Chen K; Huang G; Ma JL; Wang J; Yang DY; Yang XY; Yu Y; Zhang XB
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16661-16667. PubMed ID: 32537811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A highly stable and flexible zeolite electrolyte solid-state Li-air battery.
    Chi X; Li M; Di J; Bai P; Song L; Wang X; Li F; Liang S; Xu J; Yu J
    Nature; 2021 Apr; 592(7855):551-557. PubMed ID: 33883734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Electrochemical Stability of Quasi-Solid-State Electrolyte Containing SiO2 Nanoparticles for Li-O2 Battery Applications.
    Kim H; Kim TY; Roev V; Lee HC; Kwon HJ; Lee H; Kwon S; Im D
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1344-50. PubMed ID: 26698560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries.
    Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium-Air Batteries Catalyzed by Gold/Manganese-Dioxide.
    Wang G; Huang L; Liu S; Xie J; Zhang S; Zhu P; Cao G; Zhao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23876-84. PubMed ID: 26466174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composite Cathode Architecture with Improved Oxidation Kinetics in Polymer-Based Li-O
    Mushtaq M; Guo X; Wang Y; Hao L; Lin Z; Yu H
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30259-30267. PubMed ID: 32525303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Sputter-Deposited LiCoO
    Kim HS; Oh Y; Kang KH; Kim JH; Kim J; Yoon CS
    ACS Appl Mater Interfaces; 2017 May; 9(19):16063-16070. PubMed ID: 28443657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects.
    Hao Y; Wang S; Xu F; Liu Y; Feng N; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33735-33739. PubMed ID: 28945345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li(0.2)Ni(0.16)Co(0.1)Mn(0.54)]O2 Cathode and Si Anode.
    Ye J; Li YX; Zhang L; Zhang XP; Han M; He P; Zhou HS
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):208-14. PubMed ID: 26651500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A morphology, porosity and surface conductive layer optimized MnCo2O4 microsphere for compatible superior Li(+) ion/air rechargeable battery electrode materials.
    Yun YJ; Kim JK; Ju JY; Unithrattil S; Lee SS; Kang Y; Jung HK; Park JS; Im WB; Choi S
    Dalton Trans; 2016 Mar; 45(12):5064-70. PubMed ID: 26877264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Molten Salt Lithium-Oxygen Battery.
    Giordani V; Tozier D; Tan H; Burke CM; Gallant BM; Uddin J; Greer JR; McCloskey BD; Chase GV; Addison D
    J Am Chem Soc; 2016 Mar; 138(8):2656-63. PubMed ID: 26871485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries.
    Li Y; Xu H; Chien PH; Wu N; Xin S; Xue L; Park K; Hu YY; Goodenough JB
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8587-8591. PubMed ID: 29734500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.
    Wu B; Zhang H; Zhou W; Wang M; Li X; Zhang H
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23182-9. PubMed ID: 26400109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A reversible and higher-rate Li-O2 battery.
    Peng Z; Freunberger SA; Chen Y; Bruce PG
    Science; 2012 Aug; 337(6094):563-6. PubMed ID: 22821984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring PVFM-Based Janus Membrane-Supporting Gel Polymer Electrolyte for Highly Durable Li-O
    Meng N; Lian F; Li Y; Zhao X; Zhang L; Lu S; Li H
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22237-22247. PubMed ID: 29897229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic-acid-assisted fabrication of low-cost Li-rich cathode material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for lithium-ion battery.
    Zhao T; Chen S; Li L; Zhang X; Wu H; Wu T; Sun CJ; Chen R; Wu F; Lu J; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22305-15. PubMed ID: 25412470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.