These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24959846)

  • 1. In situ multiproperty measurements of individual nanomaterials in SEM and correlation with their atomic structures.
    Ning ZY; Fu MQ; Shi TW; Guo Y; Wei XL; Gao S; Chen Q
    Nanotechnology; 2014 Jul; 25(27):275703. PubMed ID: 24959846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope.
    Wei X; Chen Q; Peng L; Cui R; Li Y
    Ultramicroscopy; 2010 Feb; 110(3):182-9. PubMed ID: 19962243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope.
    Xu TT; Ning ZY; Shi TW; Fu MQ; Wang JY; Chen Q
    Nanotechnology; 2014 Jun; 25(22):225702. PubMed ID: 24830433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directly correlating the strain-induced electronic property change to the chirality of individual single-walled and few-walled carbon nanotubes.
    Ning Z; Chen Q; Wei J; Zhang R; Ye L; Wei X; Fu M; Guo Y; Bai X; Wei F
    Nanoscale; 2015 Aug; 7(30):13116-24. PubMed ID: 26176661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors.
    Jang HK; Jin JE; Choi JH; Kang PS; Kim DH; Kim GT
    Phys Chem Chem Phys; 2015 Mar; 17(10):6874-80. PubMed ID: 25673219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remarkable influence of slack on the vibration of a single-walled carbon nanotube resonator.
    Ning Z; Fu M; Wu G; Qiu C; Shu J; Guo Y; Wei X; Gao S; Chen Q
    Nanoscale; 2016 Apr; 8(16):8658-65. PubMed ID: 27050841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging conduction pathways in carbon nanotube network transistors by voltage-contrast scanning electron microscopy.
    Vijayaraghavan A; Timmermans MY; Grigoras K; Nasibulin AG; Kauppinen EI; Krupke R
    Nanotechnology; 2011 Jul; 22(26):265715. PubMed ID: 21586812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.
    Jiang C; Lu H; Zhang H; Shen Y; Lu Y
    Scanning; 2017; 2017():1985149. PubMed ID: 29209445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ electron microscopy four-point electromechanical characterization of freestanding metallic and semiconducting nanowires.
    Bernal RA; Filleter T; Connell JG; Sohn K; Huang J; Lauhon LJ; Espinosa HD
    Small; 2014 Feb; 10(4):725-33. PubMed ID: 24115555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transversally and axially tunable carbon nanotube resonators in situ fabricated and studied inside a scanning electron microscope.
    Ning ZY; Shi TW; Fu MQ; Guo Y; Wei XL; Gao S; Chen Q
    Nano Lett; 2014 Mar; 14(3):1221-7. PubMed ID: 24527775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes.
    Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV
    Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable range hopping in single-wall carbon nanotube thin films: a processing-structure-property relationship study.
    Luo S; Liu T; Benjamin SM; Brooks JS
    Langmuir; 2013 Jul; 29(27):8694-702. PubMed ID: 23751088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a carbon-nanotube-based field-effect transistor by microcontact printing.
    Mehlich J; Miyata Y; Shinohara H; Ravoo BJ
    Small; 2012 Jul; 8(14):2258-63. PubMed ID: 22511338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors.
    Kim T; Kim S; Olson E; Zuo JM
    Ultramicroscopy; 2008 Jun; 108(7):613-8. PubMed ID: 18061353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric force microscopy: imaging charge carriers in nanomaterials without electrical contacts.
    Zhang J; Lu W; Li YS; Cai J; Chen L
    Acc Chem Res; 2015 Jul; 48(7):1788-96. PubMed ID: 26061707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward single-chirality carbon nanotube device arrays.
    Vijayaraghavan A; Hennrich F; Stürzl N; Engel M; Ganzhorn M; Oron-Carl M; Marquardt CW; Dehm S; Lebedkin S; Kappes MM; Krupke R
    ACS Nano; 2010 May; 4(5):2748-54. PubMed ID: 20408580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of ultraviolet optical properties of semiconducting-enriched and metal-enriched single-walled carbon nanotube networks using spectroscopic ellipsometry.
    Park YR; Kim WJ; Ko MJ; Min NK; Lee CJ
    Nanoscale; 2012 Oct; 4(20):6532-6. PubMed ID: 22964891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic deformation of carbon-nanotube nanorings.
    Zheng M; Ke C
    Small; 2010 Aug; 6(15):1647-55. PubMed ID: 20623528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.