BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24960144)

  • 21. Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions.
    Choi EY; Azzaroni O; Cheng N; Zhou F; Kelby T; Huck WT
    Langmuir; 2007 Sep; 23(20):10389-94. PubMed ID: 17760471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of counterions on the swelling of spherical polyelectrolyte brushes.
    Mei Y; Ballauff M
    Eur Phys J E Soft Matter; 2005 Mar; 16(3):341-9. PubMed ID: 15685435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionizable polyelectrolyte brushes: brush height and electrosteric interaction.
    Biesheuvel PM
    J Colloid Interface Sci; 2004 Jul; 275(1):97-106. PubMed ID: 15158386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes.
    Kesal D; Christau S; Krause P; Möller T; Von Klitzing R
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of the electrostatic interaction between polyelectrolyte brush surfaces by optical tweezers.
    Murakami D; Takenaka A; Kobayashi M; Jinnai H; Takahara A
    Langmuir; 2013 Dec; 29(52):16093-7. PubMed ID: 24325298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1)H,(1)H,(2)H,(2)H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties.
    Politakos N; Azinas S; Moya SE
    Macromol Rapid Commun; 2016 Apr; 37(7):662-7. PubMed ID: 26872001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the Light Response of Strong Polyelectrolyte Brushes with Counterions.
    Wang T; Kou R; Zhang J; Zhu R; Cai H; Liu G
    Langmuir; 2020 Nov; 36(43):13051-13059. PubMed ID: 33094611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anion-specific effects on the behavior of pH-sensitive polybasic brushes.
    Willott JD; Murdoch TJ; Humphreys BA; Edmondson S; Wanless EJ; Webber GB
    Langmuir; 2015 Mar; 31(12):3707-17. PubMed ID: 25768282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces.
    Oh YJ; Khan ES; Campo AD; Hinterdorfer P; Li B
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29312-29319. PubMed ID: 31259525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrophobic effects within the dynamic pH-response of polybasic tertiary amine methacrylate brushes.
    Willott JD; Humphreys BA; Murdoch TJ; Edmondson S; Webber GB; Wanless EJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3880-90. PubMed ID: 25559878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversible electrochemical switching of polyelectrolyte brush surface energy using electroactive counterions.
    Spruijt E; Choi EY; Huck WT
    Langmuir; 2008 Oct; 24(19):11253-60. PubMed ID: 18778088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Friction and normal interaction forces between irreversibly attached weakly charged polymer brushes.
    Liberelle B; Giasson S
    Langmuir; 2008 Feb; 24(4):1550-9. PubMed ID: 18225926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic investigation of protein adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation: The implication of the chromatographic mechanism.
    You F; Shi QH
    J Chromatogr A; 2021 Sep; 1654():462460. PubMed ID: 34438303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and nanostructure of strong polyelectrolyte brushes in amphiphilic diblock copolymer monolayers on a water surface.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2004 Aug; 20(16):6754-61. PubMed ID: 15274582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformation of poly(styrene sulfonate) layers physisorbed from high salt solution studied by force measurements on two different length scales.
    Block S; Helm CA
    J Phys Chem B; 2008 Aug; 112(31):9318-27. PubMed ID: 18620452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cation-specific conformational behavior of polyelectrolyte brushes: from aqueous to nonaqueous solvent.
    Wang T; Long Y; Liu L; Wang X; Craig VS; Zhang G; Liu G
    Langmuir; 2014 Nov; 30(43):12850-9. PubMed ID: 25300430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of Proteins with a Planar Poly(acrylic acid) Brush: Analysis by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D).
    Walkowiak J; Gradzielski M; Zauscher S; Ballauff M
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Collapse and swelling of thermally sensitive poly(N-isopropylacrylamide) brushes monitored with a quartz crystal microbalance.
    Liu G; Zhang G
    J Phys Chem B; 2005 Jan; 109(2):743-7. PubMed ID: 16866436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Underscreening in concentrated electrolytes: re-entrant swelling in polyelectrolyte brushes.
    Robertson H; Elliott GR; Nelson ARJ; Le Brun AP; Webber GB; Prescott SW; Craig VSJ; Wanless EJ; Willott JD
    Phys Chem Chem Phys; 2023 Sep; 25(36):24770-24782. PubMed ID: 37671535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.