These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24960241)

  • 1. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption.
    Zhang L; Wang Y; Tong L; Xia Y
    Nano Lett; 2014 Jul; 14(7):4189-94. PubMed ID: 24960241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors.
    Niu G; Ruditskiy A; Vara M; Xia Y
    Chem Soc Rev; 2015 Aug; 44(16):5806-20. PubMed ID: 25757727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors.
    Zhang L; Niu G; Lu N; Wang J; Tong L; Wang L; Kim MJ; Xia Y
    Nano Lett; 2014 Nov; 14(11):6626-31. PubMed ID: 25272334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling up the production of colloidal nanocrystals: should we increase or decrease the reaction volume?
    Zhang L; Xia Y
    Adv Mater; 2014 Apr; 26(16):2600-6. PubMed ID: 24505032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.
    Zhang L; Wang Y; Tong L; Xia Y
    Langmuir; 2013 Dec; 29(50):15719-25. PubMed ID: 24308796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Droplet-Reactor System Capable of Automation for the Continuous and Scalable Production of Noble-Metal Nanocrystals.
    Niu G; Zhang L; Ruditskiy A; Wang L; Xia Y
    Nano Lett; 2018 Jun; 18(6):3879-3884. PubMed ID: 29734812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet-based microreactors for continuous production of palladium nanocrystals with controlled sizes and shapes.
    Kim YH; Zhang L; Yu T; Jin M; Qin D; Xia Y
    Small; 2013 Oct; 9(20):3462-7. PubMed ID: 23606671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Capping Agents and Their Roles in Shape-Controlled Synthesis of Colloidal Metal Nanocrystals.
    Yang TH; Shi Y; Janssen A; Xia Y
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15378-15401. PubMed ID: 31595609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable synthesis of nanocrystals in droplet reactors.
    Pan LJ; Tu JW; Ma HT; Yang YJ; Tian ZQ; Pang DW; Zhang ZL
    Lab Chip; 2017 Dec; 18(1):41-56. PubMed ID: 29098217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the catalytic activity of colloidal noble metal nanocrystals by using differently charged surfactants.
    Hu JH; Mi H; Wang N; Zhu HY; Guo WY; Zhang SR; Shi F; Lei ZB; Liu ZH; Jiang RB
    Nanoscale; 2018 Mar; 10(12):5607-5616. PubMed ID: 29528083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the effect of nonionic surfactants on dispersed droplet radii in submicron oil-in-water emulsions.
    Silvestri S; Ganguly N; Tabibi E
    Pharm Res; 1992 Oct; 9(10):1347-50. PubMed ID: 1448437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants.
    Rodrigues TS; Zhao M; Yang TH; Gilroy KD; da Silva AGM; Camargo PHC; Xia Y
    Chemistry; 2018 Nov; 24(64):16944-16963. PubMed ID: 29923247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the Roles of Emulsion Droplet Size and Surfactant in the Interfacial Instability-Based Fabrication Process of Micellar Nanocrystals.
    Sun Y; Mei L; Han N; Ding X; Yu C; Yang W; Ruan G
    Nanoscale Res Lett; 2017 Dec; 12(1):434. PubMed ID: 28709375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals.
    Yang TH; Zhou S; Gilroy KD; Figueroa-Cosme L; Lee YH; Wu JM; Xia Y
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13619-13624. PubMed ID: 29229860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Pt-Ni Octahedra in Continuous-Flow Droplet Reactors for the Scalable Production of Highly Active Catalysts toward Oxygen Reduction.
    Niu G; Zhou M; Yang X; Park J; Lu N; Wang J; Kim MJ; Wang L; Xia Y
    Nano Lett; 2016 Jun; 16(6):3850-7. PubMed ID: 27135156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Electrically Modulated Colloidal Droplet Transport.
    Dey R; Ghosh UU; Chakraborty S; DasGupta S
    Langmuir; 2015 Oct; 31(41):11269-78. PubMed ID: 26422170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.