These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24960288)

  • 1. Fluorescence detection of DNA hybridization based on the aggregation-induced emission of a perylene-functionalized polymer.
    Wang G; Zhang R; Xu C; Zhou R; Dong J; Bai H; Zhan X
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11136-41. PubMed ID: 24960288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-templated perylene-probe noncovalent self-assembly: a new strategy for label-free ultrasensitive fluorescence turn-on biosensing.
    Wang Y; Chen J; Jiao H; Chen Y; Li W; Zhang Q; Yu C
    Chemistry; 2013 Sep; 19(38):12846-52. PubMed ID: 23907792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA.
    Gaylord BS; Heeger AJ; Bazan GC
    J Am Chem Soc; 2003 Jan; 125(4):896-900. PubMed ID: 12537486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of 3,4,9,10-perylenetetracarboxylic diimide microfibers as a fluorescent sensing platform for biomolecular detection.
    Li H; Sun X
    Anal Chim Acta; 2011 Sep; 702(1):109-13. PubMed ID: 21819867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-induced perylene probe excimer formation and selective sensing of DNA methyltransferase activity through the monomer-excimer transition.
    Wang Y; Chen J; Chen Y; Li W; Yu C
    Anal Chem; 2014 May; 86(9):4371-8. PubMed ID: 24697780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high-sensitive DNA probe by using perylene.
    Kashida H; Takatsu T; Asanuma H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):279-80. PubMed ID: 18029695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA.
    Ma H; Li Z; Xue N; Cheng Z; Miao X
    Mikrochim Acta; 2018 Jan; 185(2):93. PubMed ID: 29594738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free fluorescence turn-on detection of microRNA based on duplex-specific nuclease and a perylene probe.
    Hu Z; Chen J; Li W; Wang Y; Li Y; Sang L; Li J; Zhang Q; Ibupoto ZH; Yu C
    Anal Chim Acta; 2015 Oct; 895():89-94. PubMed ID: 26454463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes.
    Kashida H; Takatsu T; Sekiguchi K; Asanuma H
    Chemistry; 2010 Feb; 16(8):2479-86. PubMed ID: 20066689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decorated graphene sheets for label-free DNA impedance biosensing.
    Hu Y; Wang K; Zhang Q; Li F; Wu T; Niu L
    Biomaterials; 2012 Feb; 33(4):1097-106. PubMed ID: 22061487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-up fluorescent probes utilizing binding behavior of perylenediimide derivatives to a hydrophobic pocket within DNA.
    Takada T; Yamaguchi K; Tsukamoto S; Nakamura M; Yamana K
    Analyst; 2014 Aug; 139(16):4016-21. PubMed ID: 24931124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.
    Li H; Luo Y; Sun X
    Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing of a nucleic acid binding protein via a label-free perylene probe fluorescence recovery assay.
    Liao D; Li W; Chen J; Jiao H; Zhou H; Wang B; Yu C
    Anal Chim Acta; 2013 Oct; 797():89-94. PubMed ID: 24050673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA fluorescence shift sensor: a rapid method for the detection of DNA hybridization using silver nanoclusters.
    Lee SY; Hairul Bahara NH; Choong YS; Lim TS; Tye GJ
    J Colloid Interface Sci; 2014 Nov; 433():183-188. PubMed ID: 25129336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free DNA hybridization probe based on a conducting polymer.
    Thompson LA; Kowalik J; Josowicz M; Janata J
    J Am Chem Soc; 2003 Jan; 125(2):324-5. PubMed ID: 12517131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring molecular beacon DNA probe hybridization at the single-molecule level.
    Yao G; Fang X; Yokota H; Yanagida T; Tan W
    Chemistry; 2003 Nov; 9(22):5686-92. PubMed ID: 14639652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements.
    Ganbold EO; Kang T; Lee K; Lee SY; Joo SW
    Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and hybridization properties of oligonucleotide-perylene conjugates: influence of the conjugation parameters on triplex and duplex stabilities.
    Aubert Y; Asseline U
    Org Biomol Chem; 2004 Dec; 2(23):3496-503. PubMed ID: 15565243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acid-induced tetraphenylethene probe noncovalent self-assembly and the superquenching of aggregation-induced emission.
    Chen J; Wang Y; Li W; Zhou H; Li Y; Yu C
    Anal Chem; 2014 Oct; 86(19):9866-72. PubMed ID: 25203656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide.
    Wu C; Zhou Y; Miao X; Ling L
    Analyst; 2011 May; 136(10):2106-10. PubMed ID: 21442091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.