These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24960420)

  • 1. High-gamma activity in an attention network predicts individual differences in elderly adults' behavioral performance.
    Akimoto Y; Nozawa T; Kanno A; Ihara M; Goto T; Ogawa T; Kambara T; Sugiura M; Okumura E; Kawashima R
    Neuroimage; 2014 Oct; 100():290-300. PubMed ID: 24960420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal dynamics of high-gamma activities during a 3-stimulus visual oddball task.
    Akimoto Y; Kanno A; Kambara T; Nozawa T; Sugiura M; Okumura E; Kawashima R
    PLoS One; 2013; 8(3):e59969. PubMed ID: 23555852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prefrontal theta modulates sensorimotor gamma networks during the reorienting of attention.
    Spooner RK; Wiesman AI; Proskovec AL; Heinrichs-Graham E; Wilson TW
    Hum Brain Mapp; 2020 Feb; 41(2):520-529. PubMed ID: 31621977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency.
    Kahlbrock N; Butz M; May ES; Brenner M; Kircheis G; Häussinger D; Schnitzler A
    Neuroimage; 2012 May; 61(1):216-27. PubMed ID: 22405731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The strength of alpha and gamma oscillations predicts behavioral switch costs.
    Proskovec AL; Wiesman AI; Wilson TW
    Neuroimage; 2019 Mar; 188():274-281. PubMed ID: 30543844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional modulations of somatosensory alpha, beta and gamma oscillations dissociate between anticipation and stimulus processing.
    van Ede F; Szebényi S; Maris E
    Neuroimage; 2014 Aug; 97():134-41. PubMed ID: 24769186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.
    Gauthier CT; Duyme M; Zanca M; Capron C
    Cortex; 2009 Feb; 45(2):164-76. PubMed ID: 19150518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective attention modulates inferior frontal gyrus activity during action observation.
    Chong TT; Williams MA; Cunnington R; Mattingley JB
    Neuroimage; 2008 Mar; 40(1):298-307. PubMed ID: 18178107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual differences in P3 scalp distribution in older adults, and their relationship to frontal lobe function.
    Fabiani M; Friedman D; Cheng JC
    Psychophysiology; 1998 Nov; 35(6):698-708. PubMed ID: 9844431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An event-related fMRI Study of exogenous facilitation and inhibition of return in the auditory modality.
    Mayer AR; Harrington DL; Stephen J; Adair JC; Lee RR
    J Cogn Neurosci; 2007 Mar; 19(3):455-67. PubMed ID: 17335394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study.
    Downar J; Crawley AP; Mikulis DJ; Davis KD
    Neuroimage; 2001 Dec; 14(6):1256-67. PubMed ID: 11707082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional bias as trait: correlations with novelty seeking.
    Tomer R
    Neuropsychologia; 2008; 46(7):2064-70. PubMed ID: 18342343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple neuronal networks mediate sustained attention.
    Lawrence NS; Ross TJ; Hoffmann R; Garavan H; Stein EA
    J Cogn Neurosci; 2003 Oct; 15(7):1028-38. PubMed ID: 14614813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chewing on cognitive processing speed.
    Hirano Y; Obata T; Takahashi H; Tachibana A; Kuroiwa D; Takahashi T; Ikehira H; Onozuka M
    Brain Cogn; 2013 Apr; 81(3):376-81. PubMed ID: 23375117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography.
    Ishii R; Canuet L; Herdman A; Gunji A; Iwase M; Takahashi H; Nakahachi T; Hirata M; Robinson SE; Pantev C; Takeda M
    Clin Neurophysiol; 2009 Mar; 120(3):497-504. PubMed ID: 19138878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term memory and the left intraparietal sulcus: focus of attention? Further evidence from a face short-term memory paradigm.
    Majerus S; Bastin C; Poncelet M; Van der Linden M; Salmon E; Collette F; Maquet P
    Neuroimage; 2007 Mar; 35(1):353-67. PubMed ID: 17240164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.