These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24960669)

  • 1. Redox-active on-surface assembly of metal-organic chains with single-site Pt(II).
    Skomski D; Tempas CD; Smith KA; Tait SL
    J Am Chem Soc; 2014 Jul; 136(28):9862-5. PubMed ID: 24960669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline.
    Skomski D; Tempas CD; Bukowski GS; Smith KA; Tait SL
    J Chem Phys; 2015 Mar; 142(10):101913. PubMed ID: 25770502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two- and Three-Electron Oxidation of Single-Site Vanadium Centers at Surfaces by Ligand Design.
    Skomski D; Tempas CD; Cook BJ; Polezhaev AV; Smith KA; Caulton KG; Tait SL
    J Am Chem Soc; 2015 Jun; 137(24):7898-902. PubMed ID: 26029790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Isomeric Surface Structures Are Preferred over Odd-Electron Pt
    Tempas CD; Skomski D; Cook BJ; Le D; Smith KA; Rahman TS; Caulton KG; Tait SL
    Chemistry; 2018 Oct; 24(59):15852-15858. PubMed ID: 30028543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.
    Gutzler R; Stepanow S; Grumelli D; Lingenfelder M; Kern K
    Acc Chem Res; 2015 Jul; 48(7):2132-9. PubMed ID: 26121410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-active ligand controlled selectivity of vanadium oxidation on Au(100).
    Tempas CD; Morris TW; Wisman DL; Le D; Din NU; Williams CG; Wang M; Polezhaev AV; Rahman TS; Caulton KG; Tait SL
    Chem Sci; 2018 Feb; 9(6):1674-1685. PubMed ID: 29675215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior.
    Wong KM; Yam VW
    Acc Chem Res; 2011 Jun; 44(6):424-34. PubMed ID: 21462975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pt-dipyridyl tetrazine metal-organic network on the Au(100) surface: insights from first principles calculations.
    Le D; Rahman TS
    Faraday Discuss; 2017 Oct; 204():83-95. PubMed ID: 28795746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-electron Reduction Capacity and Multiple Binding Pockets in Metal-Organic Redox Assembly at Surfaces.
    Morris TW; Huerfano IJ; Wang M; Wisman DL; Cabelof AC; Din NU; Tempas CD; Le D; Polezhaev AV; Rahman TS; Caulton KG; Tait SL
    Chemistry; 2019 Apr; 25(21):5565-5573. PubMed ID: 30746807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts.
    Pelletier JD; Basset JM
    Acc Chem Res; 2016 Apr; 49(4):664-77. PubMed ID: 26959689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecularly imprinted Ru complex catalysts integrated on oxide surfaces.
    Muratsugu S; Tada M
    Acc Chem Res; 2013 Feb; 46(2):300-11. PubMed ID: 23030829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and structural characterization of a new vapochromic Pt(II) complex based on the 1-terpyridyl-2,3,4,5,6-pentaphenylbenzene (TPPPB) ligand.
    Du P; Schneider J; Brennessel WW; Eisenberg R
    Inorg Chem; 2008 Jan; 47(1):69-77. PubMed ID: 18052245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic nanocatalysis: an accelerating seamless integration with nanotechnology.
    Dai Y; Wang Y; Liu B; Yang Y
    Small; 2015 Jan; 11(3):268-89. PubMed ID: 25363149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wurster's thiacrown ethers: synthesis, properties, and Pt(II)-coordination chemistry.
    Sibert JW; Forshee PB; Lynch V
    Inorg Chem; 2005 Nov; 44(23):8602-9. PubMed ID: 16271002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons from isolable nickel(I) precursor complexes for small molecule activation.
    Yao S; Driess M
    Acc Chem Res; 2012 Feb; 45(2):276-87. PubMed ID: 21875073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum(II) diimine complexes with catecholate ligands bearing imide electron-acceptor groups: synthesis, crystal structures, (spectro)electrochemical and EPR studies, and electronic structure.
    Shavaleev NM; Davies ES; Adams H; Best J; Weinstein JA
    Inorg Chem; 2008 Mar; 47(5):1532-47. PubMed ID: 18257523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.