BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24961208)

  • 1. Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs.
    Khosroabadi M; Ghorbani M; Rahmani F; Knaup C
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):541-9. PubMed ID: 24961208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy.
    Farhood B; Ghorbani M
    J Contemp Brachytherapy; 2015 Jan; 6(4):377-85. PubMed ID: 25834582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.
    Rivard MJ; Zamenhof RG
    Appl Radiat Isot; 2004 Nov; 61(5):753-7. PubMed ID: 15308139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose enhancement by various nanoparticles in prostate brachytherapy.
    Ghorbani M; Bakhshabadi M; Golshan A; Knaup C
    Australas Phys Eng Sci Med; 2013 Dec; 36(4):431-40. PubMed ID: 24307601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent.
    Dewi N; Mi P; Yanagie H; Sakurai Y; Morishita Y; Yanagawa M; Nakagawa T; Shinohara A; Matsukawa T; Yokoyama K; Cabral H; Suzuki M; Sakurai Y; Tanaka H; Ono K; Nishiyama N; Kataoka K; Takahashi H
    J Cancer Res Clin Oncol; 2016 Apr; 142(4):767-75. PubMed ID: 26650198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the dose enhancement of combined ¹⁰B + ¹⁵⁷Gd neutron capture therapy (NCT).
    Protti N; Geninatti-Crich S; Alberti D; Lanzardo S; Deagostino A; Toppino A; Aime S; Ballarini F; Bortolussi S; Bruschi P; Postuma I; Altieri S; Nikjoo H
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):369-73. PubMed ID: 26246584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom.
    Goorley T; Zamenhof R; Nikjoo H
    Int J Radiat Biol; 2004; 80(11-12):933-40. PubMed ID: 15764405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo evaluation of dose enhancement by cisplatin and titanocene dichloride chemotherapy drugs in brachytherapy with photon emitting sources.
    Yahya Abadi A; Ghorbani M; Mowlavi AA; Knaup C
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):327-36. PubMed ID: 24706342
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Izadi Vasafi G; Firoozabadi MM
    J Biomed Phys Eng; 2019 Dec; 9(6):653-660. PubMed ID: 32039096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Present status of boron neutron capture therapy.
    Carlsson J; Sjöberg S; Larsson BS
    Acta Oncol; 1992; 31(8):803-13. PubMed ID: 1290630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.
    Deagostino A; Protti N; Alberti D; Boggio P; Bortolussi S; Altieri S; Crich SG
    Future Med Chem; 2016 May; 8(8):899-917. PubMed ID: 27195428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.
    Hwang KC; Lai PD; Chiang CS; Wang PJ; Yuan CJ
    Biomaterials; 2010 Nov; 31(32):8419-25. PubMed ID: 20701966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles.
    Bahreyni Toossi MT; Ghorbani M; Mehrpouyan M; Akbari F; Sobhkhiz Sabet L; Soleimani Meigooni A
    Australas Phys Eng Sci Med; 2012 Jun; 35(2):177-85. PubMed ID: 22700179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.
    Peters T; Grunewald C; Blaickner M; Ziegner M; Schütz C; Iffland D; Hampel G; Nawroth T; Langguth P
    Radiat Oncol; 2015 Feb; 10():52. PubMed ID: 25889824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of boron and gadolinium compounds for neutron capture therapy. An in vitro study.
    Matsumura A; Zhang T; Nakai K; Endo K; Kumada H; Yamamoto T; Yoshida F; Sakurai Y; Yamamoto K; Nose T
    J Exp Clin Cancer Res; 2005 Mar; 24(1):93-8. PubMed ID: 15943038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with
    Firoozabadi MM; Izadi Vasafi G; Karimi-Sh K
    J Biomed Phys Eng; 2017 Mar; 7(1):13-20. PubMed ID: 28451575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations.
    Lillhök JE; Grindborg JE; Lindborg L; Gudowska I; Carlsson GA; Söderberg J; Kopeć M; Medin J
    Phys Med Biol; 2007 Aug; 52(16):4953-66. PubMed ID: 17671346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of gadolinium concentration and cell oxygen levels on radiobiological characteristics of gadolinium neutron capture therapy technique in brain tumor treatment.
    Shamsabadi R; Baghani HR
    Radiol Phys Technol; 2024 Mar; 17(1):135-142. PubMed ID: 37989987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary design of a Gd-NCT neutron beam based on compact D-T neutron source.
    Cerullo N; Esposito J; Bufalino D; Mastrullo A; Muzi L; Palmerini S
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):605-8. PubMed ID: 16604709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue composition effect on dose distribution in neutron brachytherapy/neutron capture therapy.
    Khosroabadi M; Farhood B; Ghorbani M; Hamzian N; Moghaddam HR; Davenport D
    Rep Pract Oncol Radiother; 2016; 21(1):8-16. PubMed ID: 26900352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.