These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24961620)

  • 1. Patient machine interface for the control of mechanical ventilation devices.
    Grave de Peralta R; Gonzalez Andino S; Perrig S
    Brain Sci; 2013 Nov; 3(4):1554-68. PubMed ID: 24961620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control.
    Padfield N; Camilleri K; Camilleri T; Fabri S; Bugeja M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Wearable Brain-Computer Interface (BCI) Devices Based on Electroencephalogram (EEG) for Medical Applications: A Review.
    Zhang J; Li J; Huang Z; Huang D; Yu H; Li Z
    Health Data Sci; 2023; 3():0096. PubMed ID: 38487198
    [No Abstract]   [Full Text] [Related]  

  • 6. Brain-computer interfaces--the key for the conscious brain locked into a paralyzed body.
    Kübler A; Neumann N
    Prog Brain Res; 2005; 150():513-25. PubMed ID: 16186045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms.
    He B; Baxter B; Edelman BJ; Cline CC; Ye W
    Proc IEEE Inst Electr Electron Eng; 2015 Jun; 103(6):907-925. PubMed ID: 34334804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based brain-computer interfaces exploiting steady-state somatosensory-evoked potentials: a literature review.
    Petit J; Rouillard J; Cabestaing F
    J Neural Eng; 2021 Nov; 18(5):. PubMed ID: 34725311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?
    Horowitz AJ; Guger C; Korostenskaja M
    HCA Healthc J Med; 2021; 2(3):143-162. PubMed ID: 37427002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Invariant Patterns Based on a Convolutional Neural Network and Big Electroencephalography Data for Subject-Independent P300 Brain-Computer Interfaces.
    Gao W; Yu T; Yu JG; Gu Z; Li K; Huang Y; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1047-1057. PubMed ID: 34033543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riemannian Geometry Applied to Detection of Respiratory States From EEG Signals: The Basis for a Brain-Ventilator Interface.
    Navarro-Sune X; Hudson AL; De Vico Fallani F; Martinerie J; Witon A; Pouget P; Raux M; Similowski T; Chavez M
    IEEE Trans Biomed Eng; 2017 May; 64(5):1138-1148. PubMed ID: 28129143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation.
    Machado S; Araújo F; Paes F; Velasques B; Cunha M; Budde H; Basile LF; Anghinah R; Arias-Carrión O; Cagy M; Piedade R; de Graaf TA; Sack AT; Ribeiro P
    Rev Neurosci; 2010; 21(6):451-68. PubMed ID: 21438193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Based Motor BCIs for Upper Limb Movement: Current Techniques and Future Insights.
    Wang J; Bi L; Fei W
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4413-4427. PubMed ID: 37930905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 17. Non-invasive brain-computer interface system: towards its application as assistive technology.
    Cincotti F; Mattia D; Aloise F; Bufalari S; Schalk G; Oriolo G; Cherubini A; Marciani MG; Babiloni F
    Brain Res Bull; 2008 Apr; 75(6):796-803. PubMed ID: 18394526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-density scalp electroencephalogram dataset during sensorimotor rhythm-based brain-computer interfacing.
    Iwama S; Morishige M; Kodama M; Takahashi Y; Hirose R; Ushiba J
    Sci Data; 2023 Jun; 10(1):385. PubMed ID: 37322080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain computer interfaces, a review.
    Nicolas-Alonso LF; Gomez-Gil J
    Sensors (Basel); 2012; 12(2):1211-79. PubMed ID: 22438708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.