These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24961685)

  • 1. Quantum state engineering of light with continuous-wave optical parametric oscillators.
    Morin O; Liu J; Huang K; Barbosa F; Fabre C; Laurat J
    J Vis Exp; 2014 May; (87):. PubMed ID: 24961685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of squeezed light with a monolithic optical parametric oscillator: simultaneous achievement of phase matching and cavity resonance by temperature control.
    Yonezawa H; Nagashima K; Furusawa A
    Opt Express; 2010 Sep; 18(19):20143-50. PubMed ID: 20940905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A topological source of quantum light.
    Mittal S; Goldschmidt EA; Hafezi M
    Nature; 2018 Sep; 561(7724):502-506. PubMed ID: 30202090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources.
    Huang K; Le Jeannic H; Ruaudel J; Verma VB; Shaw MD; Marsili F; Nam SW; Wu E; Zeng H; Jeong YC; Filip R; Morin O; Laurat J
    Phys Rev Lett; 2015 Jul; 115(2):023602. PubMed ID: 26207468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a superposition of odd photon number states for quantum information networks.
    Neergaard-Nielsen JS; Nielsen BM; Hettich C; Mølmer K; Polzik ES
    Phys Rev Lett; 2006 Aug; 97(8):083604. PubMed ID: 17026305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regularized linearization for quantum nonlinear optical cavities: application to degenerate optical parametric oscillators.
    Navarrete-Benlloch C; Roldán E; Chang Y; Shi T
    Opt Express; 2014 Oct; 22(20):24010-23. PubMed ID: 25321977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A squeezed light source operated under high vacuum.
    Wade AR; Mansell GL; Chua SS; Ward RL; Slagmolen BJ; Shaddock DA; McClelland DE
    Sci Rep; 2015 Dec; 5():18052. PubMed ID: 26657616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics.
    Zielińska JA; Beduini FA; Lucivero VG; Mitchell MW
    Opt Express; 2014 Oct; 22(21):25307-17. PubMed ID: 25401564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct generation of photon triplets using cascaded photon-pair sources.
    Hübel H; Hamel DR; Fedrizzi A; Ramelow S; Resch KJ; Jennewein T
    Nature; 2010 Jul; 466(7306):601-3. PubMed ID: 20671705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct generation of a multi-transverse mode non-classical state of light.
    Chalopin B; Scazza F; Fabre C; Treps N
    Opt Express; 2011 Feb; 19(5):4405-10. PubMed ID: 21369271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating large Fock states and massively squeezed states in optics using systems with nonlinear bound states in the continuum.
    Rivera N; Sloan J; Salamin Y; Joannopoulos JD; Soljačić M
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2219208120. PubMed ID: 36827265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Squeezed States of Light in Higher-Order Hermite-Gaussian Modes with a Quantum Noise Reduction of up to 10 dB.
    Heinze J; Willke B; Vahlbruch H
    Phys Rev Lett; 2022 Feb; 128(8):083606. PubMed ID: 35275673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.
    Crisafulli O; Tezak N; Soh DB; Armen MA; Mabuchi H
    Opt Express; 2013 Jul; 21(15):18371-86. PubMed ID: 23938709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quantum Gaussian-Schell model: a link between classical and quantum optics.
    Dawkins RB; Hong M; You C; Magaña-Loaiza OS
    Opt Lett; 2024 Aug; 49(15):4242-4245. PubMed ID: 39090904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators.
    Leong WS; Xin M; Chen Z; Wang Y; Lan SY
    Phys Rev Lett; 2023 Nov; 131(19):193601. PubMed ID: 38000417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Teleportation-based noiseless quantum amplification of coherent states of light.
    Fiurášek J
    Opt Express; 2022 Jan; 30(2):1466-1489. PubMed ID: 35209306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.
    Wade AR; Mansell GL; McRae TG; Chua SS; Yap MJ; Ward RL; Slagmolen BJ; Shaddock DA; McClelland DE
    Rev Sci Instrum; 2016 Jun; 87(6):063104. PubMed ID: 27370423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcycle quantum electrodynamics.
    Riek C; Sulzer P; Seeger M; Moskalenko AS; Burkard G; Seletskiy DV; Leitenstorfer A
    Nature; 2017 Jan; 541(7637):376-379. PubMed ID: 28102239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of squeezed light from one atom excited with two photons.
    Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K
    Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.