BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 24961801)

  • 21. Positioning centrosomes and spindle poles: looking at the periphery to find the centre.
    Manneville JB; Etienne-Manneville S
    Biol Cell; 2006 Sep; 98(9):557-65. PubMed ID: 16907664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor suppressor APC is an attenuator of spindle-pulling forces during
    Sugioka K; Fielmich LE; Mizumoto K; Bowerman B; van den Heuvel S; Kimura A; Sawa H
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):E954-E963. PubMed ID: 29348204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynein localization and pronuclear movement in the C. elegans zygote.
    Ignacio DP; Kravtsova N; Henry J; Palomares RH; Dawes AT
    Cytoskeleton (Hoboken); 2022 Dec; 79(12):133-143. PubMed ID: 36214774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos.
    Schonegg S; Constantinescu AT; Hoege C; Hyman AA
    Proc Natl Acad Sci U S A; 2007 Sep; 104(38):14976-81. PubMed ID: 17848508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila.
    Robinson JT; Wojcik EJ; Sanders MA; McGrail M; Hays TS
    J Cell Biol; 1999 Aug; 146(3):597-608. PubMed ID: 10444068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position.
    Bouvrais H; Chesneau L; Pastezeur S; Fairbrass D; Delattre M; Pécréaux J
    Biophys J; 2018 Dec; 115(11):2189-2205. PubMed ID: 30447992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos.
    Colombo K; Grill SW; Kimple RJ; Willard FS; Siderovski DP; Gönczy P
    Science; 2003 Jun; 300(5627):1957-61. PubMed ID: 12750478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TAC-1, a regulator of microtubule length in the C. elegans embryo.
    Le Bot N; Tsai MC; Andrews RK; Ahringer J
    Curr Biol; 2003 Sep; 13(17):1499-505. PubMed ID: 12956951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of nuclear centration in the C. elegans zygote by receptor-independent Galpha signaling and myosin II.
    Goulding MB; Canman JC; Senning EN; Marcus AH; Bowerman B
    J Cell Biol; 2007 Sep; 178(7):1177-91. PubMed ID: 17893243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers.
    Laan L; Roth S; Dogterom M
    Cell Cycle; 2012 Oct; 11(20):3750-7. PubMed ID: 22895049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study.
    Zhu J; Burakov A; Rodionov V; Mogilner A
    Mol Biol Cell; 2010 Dec; 21(24):4418-27. PubMed ID: 20980619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos.
    Redemann S; Pecreaux J; Goehring NW; Khairy K; Stelzer EH; Hyman AA; Howard J
    PLoS One; 2010 Aug; 5(8):e12301. PubMed ID: 20808841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo.
    Espiritu EB; Krueger LE; Ye A; Rose LS
    Dev Biol; 2012 Aug; 368(2):242-54. PubMed ID: 22613359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two phases of astral microtubule activity during cytokinesis in C. elegans embryos.
    Motegi F; Velarde NV; Piano F; Sugimoto A
    Dev Cell; 2006 Apr; 10(4):509-20. PubMed ID: 16580995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of spindle positioning: cortical force generators in the limelight.
    Kotak S; Gönczy P
    Curr Opin Cell Biol; 2013 Dec; 25(6):741-8. PubMed ID: 23958212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A two-step mechanism for the inactivation of microtubule organizing center function at the centrosome.
    Magescas J; Zonka JC; Feldman JL
    Elife; 2019 Jun; 8():. PubMed ID: 31246171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations.
    Schmidt DJ; Rose DJ; Saxton WM; Strome S
    Mol Biol Cell; 2005 Mar; 16(3):1200-12. PubMed ID: 15616192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos.
    Krueger LE; Wu JC; Tsou MF; Rose LS
    J Cell Biol; 2010 May; 189(3):481-95. PubMed ID: 20421425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos.
    Cowan CR; Hyman AA
    Nature; 2004 Sep; 431(7004):92-6. PubMed ID: 15343338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optogenetic dissection of mitotic spindle positioning in vivo.
    Fielmich LE; Schmidt R; Dickinson DJ; Goldstein B; Akhmanova A; van den Heuvel S
    Elife; 2018 Aug; 7():. PubMed ID: 30109984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.