These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 24962007)
1. Evaluation of granulated lactose as a carrier for DPI formulations 1: effect of granule size. Du P; Du J; Smyth HD AAPS PharmSciTech; 2014 Dec; 15(6):1417-28. PubMed ID: 24962007 [TBL] [Abstract][Full Text] [Related]
2. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate. Kaialy W; Ticehurst M; Nokhodchi A Int J Pharm; 2012 Feb; 423(2):184-94. PubMed ID: 22197772 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading. Du P; Du J; Smyth HDC J Pharm Sci; 2017 Jan; 106(1):366-376. PubMed ID: 27939234 [TBL] [Abstract][Full Text] [Related]
4. Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol-acetone. Kaialy W; Ticehurst MD; Murphy J; Nokhodchi A J Pharm Sci; 2011 Jul; 100(7):2665-84. PubMed ID: 21268026 [TBL] [Abstract][Full Text] [Related]
5. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Donovan MJ; Smyth HD Int J Pharm; 2010 Dec; 402(1-2):1-9. PubMed ID: 20816928 [TBL] [Abstract][Full Text] [Related]
6. Effect of carrier particle shape on dry powder inhaler performance. Kaialy W; Alhalaweh A; Velaga SP; Nokhodchi A Int J Pharm; 2011 Dec; 421(1):12-23. PubMed ID: 21945739 [TBL] [Abstract][Full Text] [Related]
7. The effects of loaded carrier mass and formulation mass on aerosolization efficiency in dry powder inhaler devices. Ooi J; Gill C; Young PM; Traini D Curr Drug Deliv; 2015; 12(1):40-6. PubMed ID: 25146438 [TBL] [Abstract][Full Text] [Related]
8. Elucidating the Effect of Fine Lactose Ratio on the Rheological Properties and Aerodynamic Behavior of Dry Powder for Inhalation. Sun Y; Qin L; Li J; Su J; Song R; Zhang X; Guan J; Mao S AAPS J; 2021 Apr; 23(3):55. PubMed ID: 33856568 [TBL] [Abstract][Full Text] [Related]
9. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers. Zeng XM; MacRitchie HB; Marriott C; Martin GP Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863 [TBL] [Abstract][Full Text] [Related]
10. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler. de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246 [TBL] [Abstract][Full Text] [Related]
11. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187 [TBL] [Abstract][Full Text] [Related]
12. Lactose composite carriers for respiratory delivery. Young PM; Kwok P; Adi H; Chan HK; Traini D Pharm Res; 2009 Apr; 26(4):802-10. PubMed ID: 19015956 [TBL] [Abstract][Full Text] [Related]
13. Surface Modification of lactose carrier particles using a fluid bed coater to improve fine particle fraction for dry powder inhalers. Gong QQ; Tay JYS; Veronica N; Xu J; Heng PWS; Zhang YP; Liew CV Pharm Dev Technol; 2023 Feb; 28(2):164-175. PubMed ID: 36683577 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers. Tan BMJ; Chan LW; Heng PWS Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144 [TBL] [Abstract][Full Text] [Related]
15. Elucidation of lactose fine size and drug shape on rheological properties and aerodynamic behavior of dry powders for inhalation. Sun Y; Yu D; Li J; Zhao J; Feng Y; Zhang X; Mao S Eur J Pharm Biopharm; 2022 Oct; 179():47-57. PubMed ID: 36029939 [TBL] [Abstract][Full Text] [Related]
16. The influence of physical properties and morphology of crystallised lactose on delivery of salbutamol sulphate from dry powder inhalers. Kaialy W; Martin GP; Larhrib H; Ticehurst MD; Kolosionek E; Nokhodchi A Colloids Surf B Biointerfaces; 2012 Jan; 89():29-39. PubMed ID: 21962946 [TBL] [Abstract][Full Text] [Related]
17. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate. Mönckedieck M; Kamplade J; Fakner P; Urbanetz NA; Walzel P; Steckel H; Scherließ R Int J Pharm; 2017 May; 524(1-2):351-363. PubMed ID: 28347847 [TBL] [Abstract][Full Text] [Related]
18. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations. Hertel M; Schwarz E; Kobler M; Hauptstein S; Steckel H; Scherließ R Int J Pharm; 2018 Jan; 535(1-2):59-67. PubMed ID: 29100914 [TBL] [Abstract][Full Text] [Related]
19. Spherical agglomerates of lactose as potential carriers for inhalation. Zellnitz S; Lamešić D; Stranzinger S; Pinto JT; Planinšek O; Paudel A Eur J Pharm Biopharm; 2021 Feb; 159():11-20. PubMed ID: 33358941 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of magnesium stearate and fine lactose in improving aerosolization performance of fluticasone propionate in dry powder formulation. He X; Li J; Wen X; Ma S; An Y; Zhang X; Guan J; Mao S Int J Pharm; 2024 Oct; 664():124609. PubMed ID: 39163928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]