BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24962116)

  • 1. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.
    Tajima Y; Kaida K; Hayakawa A; Fukui K; Nishio Y; Hashiguchi K; Fudou R; Matsui K; Usuda Y; Sode K
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):7803-13. PubMed ID: 24962116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Appl Environ Microbiol; 2015 Feb; 81(3):929-37. PubMed ID: 25416770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations.
    Converti A; Perego P
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):303-9. PubMed ID: 12111162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.
    Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression of phosphoenolpyruvate carboxykinase and nicotinic acid phosphoribosyltransferase for succinate production in engineered Escherichia coli.
    Jiang M; Chen X; Liang L; Liu R; Wan Q; Wu M; Zhang H; Ma J; Chen K; Ouyang P
    Enzyme Microb Technol; 2014 Mar; 56():8-14. PubMed ID: 24564896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
    Zhang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2010 Apr; 76(8):2397-401. PubMed ID: 20154114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO
    Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.
    Lu Y; Zhang C; Lai Q; Zhao H; Xing XH
    Enzyme Microb Technol; 2011 Feb; 48(2):187-92. PubMed ID: 22112830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli.
    Lin H; Bennett GN; San KY
    J Ind Microbiol Biotechnol; 2005 Mar; 32(3):87-93. PubMed ID: 15770511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production.
    Lee SJ; Song H; Lee SY
    Appl Environ Microbiol; 2006 Mar; 72(3):1939-48. PubMed ID: 16517641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.
    Sánchez AM; Bennett GN; San KY
    Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production.
    Zhang C; Lv FX; Xing XH
    Bioresour Technol; 2011 Sep; 102(18):8344-9. PubMed ID: 21764301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for efficient repetitive production of succinate using metabolically engineered Escherichia coli.
    Ma JF; Jiang M; Chen KQ; Xu B; Liu SW; Wei P; Ying HJ; Chang HN; Ouyang PK
    Bioprocess Biosyst Eng; 2011 May; 34(4):411-8. PubMed ID: 21103890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111].
    Liang L; Ma J; Liu R; Wang G; Xu B; Zhang M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1005-12. PubMed ID: 22016984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the global regulation of anaerobic metabolism for improved biohydrogen production.
    Lu Y; Zhao H; Zhang C; Xing XH
    Bioresour Technol; 2016 Jan; 200():35-41. PubMed ID: 26476162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value.
    Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J
    Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.