These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24962289)

  • 1. Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators.
    Lanzillotti-Kimura ND; Fainstein A; Jusserand B
    Ultrasonics; 2015 Feb; 56():80-9. PubMed ID: 24962289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.
    Fainstein A; Lanzillotti-Kimura ND; Jusserand B; Perrin B
    Phys Rev Lett; 2013 Jan; 110(3):037403. PubMed ID: 23373951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lasing from active optomechanical resonators.
    Czerniuk T; Brüggemann C; Tepper J; Brodbeck S; Schneider C; Kamp M; Höfling S; Glavin BA; Yakovlev DR; Akimov AV; Bayer M
    Nat Commun; 2014 Jul; 5():4038. PubMed ID: 25008784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range.
    Lamberti FR; Yao Q; Lanco L; Nguyen DT; Esmann M; Fainstein A; Sesin P; Anguiano S; Villafañe V; Bruchhausen A; Senellart P; Favero I; Lanzillotti-Kimura ND
    Opt Express; 2017 Oct; 25(20):24437-24447. PubMed ID: 29041388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A one-dimensional optomechanical crystal with a complete phononic band gap.
    Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM
    Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits.
    Balram KC; Davanço MI; Ilic BR; Kyhm JH; Song JD; Srinivasan K
    Phys Rev Appl; 2017 Feb; 7():. PubMed ID: 28580373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice.
    Shinokita K; Reimann K; Woerner M; Elsaesser T; Hey R; Flytzanis C
    Phys Rev Lett; 2016 Feb; 116(7):075504. PubMed ID: 26943546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.
    Mante PA; Huang YR; Yang SC; Liu TM; Maznev AA; Sheu JK; Sun CK
    Ultrasonics; 2015 Feb; 56():52-65. PubMed ID: 25455189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.
    Okamoto H; Watanabe T; Ohta R; Onomitsu K; Gotoh H; Sogawa T; Yamaguchi H
    Nat Commun; 2015 Oct; 6():8478. PubMed ID: 26477487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brillouin cavity optomechanics with microfluidic devices.
    Bahl G; Kim KH; Lee W; Liu J; Fan X; Carmon T
    Nat Commun; 2013; 4():1994. PubMed ID: 23744103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micropillar Resonators for Optomechanics in the Extremely High 19-95-GHz Frequency Range.
    Anguiano S; Bruchhausen AE; Jusserand B; Favero I; Lamberti FR; Lanco L; Sagnes I; Lemaître A; Lanzillotti-Kimura ND; Senellart P; Fainstein A
    Phys Rev Lett; 2017 Jun; 118(26):263901. PubMed ID: 28707938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave oscillators incorporating high performance distributed Bragg reflector microwave resonators.
    Flory CA; Ko HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):824-9. PubMed ID: 18244234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From cavity optomechanics to cavity-less exciton optomechanics: a review.
    Chang H; Zhang J
    Nanoscale; 2022 Nov; 14(45):16710-16730. PubMed ID: 36245359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polariton-driven phonon laser.
    Chafatinos DL; Kuznetsov AS; Anguiano S; Bruchhausen AE; Reynoso AA; Biermann K; Santos PV; Fainstein A
    Nat Commun; 2020 Sep; 11(1):4552. PubMed ID: 32917874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable nanostructured distributed Bragg reflectors for III-nitride optoelectronic applications.
    Wei B; Han Y; Wang Y; Zhao H; Sun B; Yang X; Han L; Wang M; Li Z; Xiao H; Zhang Y
    RSC Adv; 2020 Jun; 10(39):23341-23349. PubMed ID: 35520320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation.
    Kim N; Han SP; Ryu HC; Ko H; Park JW; Lee D; Jeon MY; Park KH
    Opt Express; 2012 Jul; 20(16):17496-502. PubMed ID: 23038302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode-locking and frequency mixing at THz pulse repetition rates in a sampled-grating DBR mode-locked laser.
    Hou L; Haji M; Marsh JH
    Opt Express; 2014 Sep; 22(18):21690-700. PubMed ID: 25321545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anderson Photon-Phonon Colocalization in Certain Random Superlattices.
    Arregui G; Lanzillotti-Kimura ND; Sotomayor-Torres CM; García PD
    Phys Rev Lett; 2019 Feb; 122(4):043903. PubMed ID: 30768324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual cavity in distributed Bragg reflectors.
    Shchukin VA; Ledentsov NN; Kalosha VP; Ledentsov N; Agustin M; Kropp JR; Maximov MV; Zubov FI; Shernyakov YM; Payusov AS; Gordeev NY; Kulagina MM; Zhukov AE; Egorov AY
    Opt Express; 2018 Sep; 26(19):25280-25292. PubMed ID: 30469631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.