These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24963010)

  • 1. Bias and variance reduction in estimating the proportion of true-null hypotheses.
    Cheng Y; Gao D; Tong T
    Biostatistics; 2015 Jan; 16(1):189-204. PubMed ID: 24963010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of methods for estimating the number of true null hypotheses in multiplicity testing.
    Hsueh HM; Chen JJ; Kodell RL
    J Biopharm Stat; 2003 Nov; 13(4):675-89. PubMed ID: 14584715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the proportion of true null hypotheses and adaptive false discovery rate control in discrete paradigm.
    Biswas A; Chattopadhyay G
    Biom J; 2024 Mar; 66(2):e2200204. PubMed ID: 38356198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards accurate estimation of the proportion of true null hypotheses in multiple testing.
    Zhang SD
    PLoS One; 2011 Apr; 6(4):e18874. PubMed ID: 21526119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the proportion of true null hypotheses under sparse dependence: Adaptive FDR controlling in microarray data.
    Biswas A; Chakraborty S; Baruah VJ
    Stat Methods Med Res; 2022 May; 31(5):917-927. PubMed ID: 35133933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the proportion of true null hypotheses for multiple comparisons.
    Jiang H; Doerge RW
    Cancer Inform; 2008; 6():25-32. PubMed ID: 19259400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple testing with discrete data: Proportion of true null hypotheses and two adaptive FDR procedures.
    Chen X; Doerge RW; Heyse JF
    Biom J; 2018 Jul; 60(4):761-779. PubMed ID: 29748972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures.
    Lu X; Perkins DL
    BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data.
    Lai Y
    Biostatistics; 2007 Oct; 8(4):744-55. PubMed ID: 17244594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust method for large-scale multiple hypotheses testing.
    Han S; Andrei AC; Tsui KW
    Biom J; 2010 Apr; 52(2):222-32. PubMed ID: 20391535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimators of the local false discovery rate designed for small numbers of tests.
    Padilla M; Bickel DR
    Stat Appl Genet Mol Biol; 2012 Oct; 11(5):4. PubMed ID: 23079518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias-corrected estimators for proportion of true null hypotheses: application of adaptive FDR-controlling in segmented failure data.
    Biswas A; Chattopadhyay G; Chatterjee A
    J Appl Stat; 2022; 49(14):3591-3613. PubMed ID: 36246854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the information in p-values for the analysis and planning of multiple-test experiments.
    Ruppert D; Nettleton D; Hwang JT
    Biometrics; 2007 Jun; 63(2):483-95. PubMed ID: 17715492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Randomized
    Hoang AT; Dickhaus T
    Biom J; 2022 Feb; 64(2):384-409. PubMed ID: 33464615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A direct approach to estimating false discovery rates conditional on covariates.
    Boca SM; Leek JT
    PeerJ; 2018; 6():e6035. PubMed ID: 30581661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the Proportion of True Null Hypotheses Using the Pattern of Observed
    Tong T; Feng Z; Hilton JS; Zhao H
    J Appl Stat; 2013 Jan; 40(9):1949-1964. PubMed ID: 24078762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimally adjusted last cluster for prediction based on balancing the bias and variance by bootstrapping.
    Kim J
    PLoS One; 2019; 14(11):e0223529. PubMed ID: 31682618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias in error estimation when using cross-validation for model selection.
    Varma S; Simon R
    BMC Bioinformatics; 2006 Feb; 7():91. PubMed ID: 16504092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures.
    Wang HQ; Tuominen LK; Tsai CJ
    Bioinformatics; 2011 Jan; 27(2):225-31. PubMed ID: 21098430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical inference for missing data mechanisms.
    Zhao Y
    Stat Med; 2020 Dec; 39(28):4325-4333. PubMed ID: 32815184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.