BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24963559)

  • 1. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications.
    Mihaila SM; Popa EG; Reis RL; Marques AP; Gomes ME
    Biomacromolecules; 2014 Aug; 15(8):2849-60. PubMed ID: 24963559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications.
    Mihaila SM; Gaharwar AK; Reis RL; Marques AP; Gomes ME; Khademhosseini A
    Adv Healthc Mater; 2013 Jun; 2(6):895-907. PubMed ID: 23281344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing.
    Fedorovich NE; De Wijn JR; Verbout AJ; Alblas J; Dhert WJ
    Tissue Eng Part A; 2008 Jan; 14(1):127-33. PubMed ID: 18333811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light-based 3D bioprinted composite scaffolds of κ-carrageenan for bone tissue engineering applications.
    Kumari S; Mondal P; Tyeb S; Chatterjee K
    J Mater Chem B; 2024 Feb; 12(7):1926-1936. PubMed ID: 38314524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures.
    Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T
    Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of cell viability by fabrication of macroscopic 3D hydrogel scaffolds using an innovative cell-dispensing technique supplemented by preosteoblast-laden micro-beads.
    Lee H; Ahn S; Chun W; Kim G
    Carbohydr Polym; 2014 Apr; 104():191-8. PubMed ID: 24607177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrogenic phenotype of different cells encapsulated in κ-carrageenan hydrogels for cartilage regeneration strategies.
    Popa E; Reis R; Gomes M
    Biotechnol Appl Biochem; 2012; 59(2):132-41. PubMed ID: 23586793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product?
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Adv Healthc Mater; 2019 May; 8(9):e1900014. PubMed ID: 30866173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications.
    Sadat-Shojai M; Khorasani MT; Jamshidi A
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():835-843. PubMed ID: 25687015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly.
    Morimoto Y; Hsiao AY; Takeuchi S
    Adv Drug Deliv Rev; 2015 Dec; 95():29-39. PubMed ID: 26387835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering.
    Du C; Narayanan K; Leong MF; Wan AC
    Biomaterials; 2014 Jul; 35(23):6006-14. PubMed ID: 24780169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroporous Hydrogel Scaffolds with Tunable Physicochemical Properties for Tissue Engineering Constructed Using Renewable Polysaccharides.
    Qi X; Su T; Zhang M; Tong X; Pan W; Zeng Q; Zhou Z; Shen L; He X; Shen J
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13256-13264. PubMed ID: 32068392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules.
    Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T
    Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell delivery systems using alginate--carrageenan hydrogel beads and fibers for regenerative medicine applications.
    Popa EG; Gomes ME; Reis RL
    Biomacromolecules; 2011 Nov; 12(11):3952-61. PubMed ID: 21970513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up engineering of cell-laden hydrogel microfibrous patch for guided tissue regeneration.
    Campiglio CE; Bidarra SJ; Draghi L; Barrias CC
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110488. PubMed ID: 31924002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.