BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24963703)

  • 1. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells.
    Nickerson A; Huang T; Lin LJ; Nan X
    PLoS One; 2014; 9(6):e100589. PubMed ID: 24963703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM).
    Nickerson A; Huang T; Lin LJ; Nan X
    J Vis Exp; 2015 Dec; (106):e53154. PubMed ID: 26779930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimolecular fluorescence complementation.
    Wong KA; O'Bryan JP
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21525844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spying on protein interactions in living cells with reconstituted scarlet light.
    Wang S; Ding M; Xue B; Hou Y; Sun Y
    Analyst; 2018 Oct; 143(21):5161-5169. PubMed ID: 30255175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.
    Subach FV; Patterson GH; Manley S; Gillette JM; Lippincott-Schwartz J; Verkhusha VV
    Nat Methods; 2009 Feb; 6(2):153-9. PubMed ID: 19169259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association.
    Robida AM; Kerppola TK
    J Mol Biol; 2009 Dec; 394(3):391-409. PubMed ID: 19733184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimolecular Fluorescence Complementation to Visualize Protein-Protein Interactions in Human Cells Based on Gateway Cloning Technology.
    Lepur A; Vugrek O
    Methods Mol Biol; 2018; 1794():259-267. PubMed ID: 29855963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational engineering and synthetic applications of a high specificity BiFC probe derived from Springgreen-M.
    Sun Y; Wang Y; Chen K; Sun Y; Wang S
    Analyst; 2022 Sep; 147(19):4326-4336. PubMed ID: 36040713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low false-positives in an mLumin-based bimolecular fluorescence complementation system with a bicistronic expression vector.
    Liu S; Li X; Yang J; Zhang Z
    Sensors (Basel); 2014 Feb; 14(2):3284-92. PubMed ID: 24556667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Imaging of RNA-Protein Interactions with a Photoactivatable Trimolecular Fluorescence Complementation System.
    Chen M; Li S; Li W; Zhang ZP; Zhang X; Zhang XE; Ge F; Cui Z
    ACS Chem Biol; 2021 Jun; 16(6):1003-1010. PubMed ID: 34009928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Imaging of Protein Interactions in the Germplasm with Bimolecular Fluorescent Complementation.
    Perera RP; Dosch R
    Methods Mol Biol; 2021; 2218():303-317. PubMed ID: 33606241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.
    Wang S; Ding M; Xue B; Hou Y; Sun Y
    ACS Chem Biol; 2018 May; 13(5):1180-1188. PubMed ID: 29283249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells.
    Wang S; Ding M; Chen X; Chang L; Sun Y
    Biomed Opt Express; 2017 Jun; 8(6):3119-3131. PubMed ID: 28663931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimolecular Fluorescence Complementation (BiFC) Assay to Visualize Protein-Protein Interactions in Living Cells.
    Gnanasekaran P; Pappu HR
    Methods Mol Biol; 2023; 2690():117-120. PubMed ID: 37450142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel pair of split venus fragments to detect protein-protein interactions by in vitro and in vivo bimolecular fluorescence complementation assays.
    Ohashi K; Mizuno K
    Methods Mol Biol; 2014; 1174():247-62. PubMed ID: 24947387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput, single-particle tracking reveals nested membrane domains that dictate KRas
    Lee Y; Phelps C; Huang T; Mostofian B; Wu L; Zhang Y; Tao K; Chang YH; Stork PJ; Gray JW; Zuckerman DM; Nan X
    Elife; 2019 Nov; 8():. PubMed ID: 31674905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation.
    Kerppola TK
    Chem Soc Rev; 2009 Oct; 38(10):2876-86. PubMed ID: 19771334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Protein-Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC) and Luciferase Complementation Assays (LCA).
    Bais P; Alidrissi L; Blilou I
    Methods Mol Biol; 2023; 2690():121-131. PubMed ID: 37450143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments.
    Ohashi K; Kiuchi T; Shoji K; Sampei K; Mizuno K
    Biotechniques; 2012 Jan; 52(1):45-50. PubMed ID: 22229727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans.
    Hiatt SM; Shyu YJ; Duren HM; Hu CD
    Methods; 2008 Jul; 45(3):185-91. PubMed ID: 18586101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.