BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24963747)

  • 21. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Life Dry-Contact Ear-EEG.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5470-5474. PubMed ID: 30441575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Event-Related Potentials Measured From In and Around the Ear Electrodes Integrated in a Live Hearing Device for Monitoring Sound Perception.
    Denk F; Grzybowski M; Ernst SMA; Kollmeier B; Debener S; Bleichner MG
    Trends Hear; 2018; 22():2331216518788219. PubMed ID: 30022733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.
    Luo A; Sullivan TJ
    J Neural Eng; 2010 Apr; 7(2):26010. PubMed ID: 20332551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-contact Wearable EEG Sensors for SSVEP-based Brain Computer Interface Applications.
    Soleymanpour R; Patel C; Kim I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2016-2019. PubMed ID: 30440796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications.
    Grozea C; Voinescu CD; Fazli S
    J Neural Eng; 2011 Apr; 8(2):025008. PubMed ID: 21436526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison.
    Bleichner MG; Mirkovic B; Debener S
    J Neural Eng; 2016 Dec; 13(6):066004. PubMed ID: 27705963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cost-efficient and Custom Electrode-holder Assembly Infrastructure for EEG Recordings.
    Lin YP; Chen TY; Chen WJ
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bimodal BCI using simultaneously NIRS and EEG.
    Tomita Y; Vialatte FB; Dreyfus G; Mitsukura Y; Bakardjian H; Cichocki A
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1274-84. PubMed ID: 24658251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multisensory Stimulation and EEG Recording Below the Hair-Line: A New Paradigm on Brain Computer Interfaces.
    Carmona L; Diez PF; Laciar E; Mut V
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):825-831. PubMed ID: 32149649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier.
    De Vos M; Kroesen M; Emkes R; Debener S
    J Neural Eng; 2014 Jun; 11(3):036008. PubMed ID: 24763067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auditory Steady-State Responses Across Chirp Repetition Rates For Ear-EEG And Scalp EEG.
    Christensen CB; Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1376-1379. PubMed ID: 30440648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing the Usability of Alternative EEG Devices to Traditional Electrode Caps for SSVEP-BCI Controlled Assistive Robots.
    Cardoso ASS; Andreasen Struijk LNS; Kaeseler RL; Jochumsen M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward non-hair-bearing brain-computer interfaces for neurocognitive lapse detection.
    Wei CS; Wang YT; Lin CT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6638-41. PubMed ID: 26737815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Miniaturized electroencephalographic scalp electrode for optimal wearing comfort.
    Nikulin VV; Kegeles J; Curio G
    Clin Neurophysiol; 2010 Jul; 121(7):1007-14. PubMed ID: 20227914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Instant Donning Multi-Channel EEG Headset (with Comb-Shaped Dry Electrodes) and BCI Applications.
    Kim J; Lee J; Han C; Park K
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An in-the-ear platform for recording electroencephalogram.
    Looney D; Park C; Kidmose P; Rank ML; Ungstrup M; Rosenkranz K; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6882-5. PubMed ID: 22255920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.