BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24963813)

  • 1. l-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota.
    Hobbs ME; Williams HJ; Hillerich B; Almo SC; Raushel FM
    Biochemistry; 2014 Jul; 53(28):4661-70. PubMed ID: 24963813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish.
    Xu Y; Zhu X; Chen Y; Gong Y; Liu L
    Plant Physiol Biochem; 2013 Sep; 70():269-77. PubMed ID: 23800662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of L-arabinose/D-galactose 1-dehydrogenase from Thermotoga maritima and its application in galactonate production.
    Xue M; Feng S; Xie F; Zhao H; Xue Y
    World J Microbiol Biotechnol; 2022 Sep; 38(12):223. PubMed ID: 36109417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.
    Ishikawa T; Nishikawa H; Gao Y; Sawa Y; Shibata H; Yabuta Y; Maruta T; Shigeoka S
    J Biol Chem; 2008 Nov; 283(45):31133-41. PubMed ID: 18782759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADP
    Tsevelkhorloo M; Kim SH; Kang DK; Lee CR; Hong SK
    J Microbiol Biotechnol; 2021 May; 31(5):756-763. PubMed ID: 33820885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biosynthetic pathway of vitamin C in higher plants.
    Wheeler GL; Jones MA; Smirnoff N
    Nature; 1998 May; 393(6683):365-9. PubMed ID: 9620799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for biosynthesis of D-galactonate.
    Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Malihan LB; Lee WK; Park SJ; Chung WJ
    Bioprocess Biosyst Eng; 2014 Mar; 37(3):383-91. PubMed ID: 23820824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae.
    Aro-Kärkkäinen N; Toivari M; Maaheimo H; Ylilauri M; Pentikäinen OT; Andberg M; Oja M; Penttilä M; Wiebe MG; Ruohonen L; Koivula A
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9653-65. PubMed ID: 25236800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii.
    Sauer M; Branduardi P; Valli M; Porro D
    Appl Environ Microbiol; 2004 Oct; 70(10):6086-91. PubMed ID: 15466554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-ascorbic acid biosynthesis.
    Smirnoff N
    Vitam Horm; 2001; 61():241-66. PubMed ID: 11153268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of L-ascorbic acid (vitamin C) by Saccharomyces cerevisiae.
    Hancock RD; Galpin JR; Viola R
    FEMS Microbiol Lett; 2000 May; 186(2):245-50. PubMed ID: 10802179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii.
    Wong TY; Yao XT
    Appl Environ Microbiol; 1994 Jun; 60(6):2065-8. PubMed ID: 16349292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a non-phosphorylated route of galactose breakdown in cell-free extracts of Aspergillus niger.
    Elshafei AM; Abdel-Fatah OM
    Enzyme Microb Technol; 2001 Jul; 29(1):76-83. PubMed ID: 11427238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Characterization of L-Galactose Dehydrogenase: An Essential Enzyme for Vitamin C Biosynthesis.
    Vargas JA; Leonardo DA; D'Muniz Pereira H; Lopes AR; Rodriguez HN; Cobos M; Marapara JL; Castro JC; Garratt RC
    Plant Cell Physiol; 2022 Aug; 63(8):1140-1155. PubMed ID: 35765894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldohexuronic acid catabolism by a soil Aeromonas.
    Farmer JJ; Eagon RG
    J Bacteriol; 1969 Jan; 97(1):97-106. PubMed ID: 4388117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3,6-Anhydro-L-Galactose Dehydrogenase VvAHGD is a Member of a New Aldehyde Dehydrogenase Family and Catalyzes by a Novel Mechanism with Conformational Switch of Two Catalytic Residues Cysteine 282 and Glutamate 248.
    Wang Y; Li PY; Zhang Y; Cao HY; Wang YJ; Li CY; Wang P; Su HN; Chen Y; Chen XL; Zhang YZ
    J Mol Biol; 2020 Mar; 432(7):2186-2203. PubMed ID: 32087198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penicillium camemberti galacturonate reductase: C-1 oxidation/reduction of uronic acids and substrate inhibition mitigation by aldonic acids.
    Wagschal K; Jordan DB; Hart-Cooper WM; Chan VJ
    Int J Biol Macromol; 2020 Jun; 153():1090-1098. PubMed ID: 31756465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galactose catabolism in Caulobacter crescentus.
    Kurn N; Contreras I; Shapiro L
    J Bacteriol; 1978 Aug; 135(2):517-20. PubMed ID: 210153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the enantiomeric nature of 2-keto-3-deoxy-galactonate in the catabolic pathway of 3,6-anhydro-L-galactose.
    Yun EJ; Yu S; Kim DH; Park NJ; Liu JJ; Jin YS; Kim KH
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7427-7438. PubMed ID: 37812254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.