These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24963917)

  • 1. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.
    Wang J; Zhang Q; Li X; Wang Z; Guo H; Xu D; Zhang K
    Phys Chem Chem Phys; 2014 Aug; 16(30):16021-9. PubMed ID: 24963917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
    Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing high-rate and elevated-temperature performances of nano-sized and micron-sized LiMn2O4 in lithium-ion batteries with ultrathin surface coatings.
    Luan X; Guan D; Wang Y
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7113-20. PubMed ID: 23035441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical properties of Sn-substituted LiMn2O4 thin films prepared by radio-frequency magnetron sputtering.
    Kong WY; Yim H; Yoon SJ; Nahm S; Choi JW
    J Nanosci Nanotechnol; 2013 May; 13(5):3288-92. PubMed ID: 23858845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings.
    Guan D; Jeevarajan JA; Wang Y
    Nanoscale; 2011 Apr; 3(4):1465-9. PubMed ID: 21327283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature.
    Hu P; Duan Y; Hu D; Qin B; Zhang J; Wang Q; Liu Z; Cui G; Chen L
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4720-7. PubMed ID: 25654192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries.
    Nithya C; Gopukumar S
    ChemSusChem; 2013 May; 6(5):898-904. PubMed ID: 23512863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical performances of surface modified CePO4-coated LiMn2O4 cathode materials for rechargeable lithium ion batteries.
    Mohan P; Kalaignan GP
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5028-35. PubMed ID: 24757976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinel LiMn2O4 nanorods as lithium ion battery cathodes.
    Kim DK; Muralidharan P; Lee HW; Ruffo R; Yang Y; Chan CK; Peng H; Huggins RA; Cui Y
    Nano Lett; 2008 Nov; 8(11):3948-52. PubMed ID: 18826287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of Energy Capacity with Vitamin C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries.
    Kim JW; Ocon JD; Kim HS; Lee J
    ChemSusChem; 2015 Sep; 8(17):2883-91. PubMed ID: 25925659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimension Hierarchical Al2O3 Nanosheets Wrapped LiMn2O4 with Enhanced Cycling Stability as Cathode Material for Lithium Ion Batteries.
    Lai F; Zhang X; Wang H; Hu S; Wu X; Wu Q; Huang Y; He Z; Li Q
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21656-65. PubMed ID: 27490281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators.
    Aravindan V; Sundaramurthy J; Kumar PS; Shubha N; Ling WC; Ramakrishna S; Madhavi S
    Nanoscale; 2013 Nov; 5(21):10636-45. PubMed ID: 24057339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced LiMn
    Torres-Castanedo CG; Evmenenko G; Luu NS; Das PM; Hyun WJ; Park KY; Dravid VP; Hersam MC; Bedzyk MJ
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35664-35673. PubMed ID: 37434317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Surface Structural Stabilization of the High-Temperature and High-Voltage Cycling Performance of Al
    Chen B; Ben L; Yu H; Chen Y; Huang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):550-559. PubMed ID: 29265811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect effects on the physical and electrochemical properties of nanoscale LiFe0.92PO4 and LiFe0.92PO4/C/graphene composites.
    Wang Y; Feng ZS; Zhang C; Yu L; Chen JJ; Hu J; Liu XZ
    Nanoscale; 2013 May; 5(9):3704-12. PubMed ID: 23493954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes.
    Qiu B; Wang J; Xia Y; Wei Z; Han S; Liu Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9185-93. PubMed ID: 24857766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density.
    Hosono E; Kudo T; Honma I; Matsuda H; Zhou H
    Nano Lett; 2009 Mar; 9(3):1045-51. PubMed ID: 19209916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Engineering of a LiMn
    Su L; Smith PM; Anand P; Reeja-Jayan B
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27063-27073. PubMed ID: 30040379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing Manganese Dissolution via Exposing Stable {111} Facets for High-Performance Lithium-Ion Oxide Cathode.
    Xiao Y; Zhang XD; Zhu YF; Wang PF; Yin YX; Yang X; Shi JL; Liu J; Li H; Guo XD; Zhong BH; Guo YG
    Adv Sci (Weinh); 2019 Jul; 6(13):1801908. PubMed ID: 31380176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.