These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24964079)

  • 21. [Study on thermal decomposition of HMX energetic materials by in-situ FTIR spectroscopy].
    Liu XY; Wang XC; Huang YG; Zheng MX; Wang L; Jiang Y; Luo YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):251-4. PubMed ID: 16826899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shock tube and theoretical studies on the thermal decomposition of propane: evidence for a roaming radical channel.
    Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B
    J Phys Chem A; 2011 Apr; 115(15):3366-79. PubMed ID: 21446707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-Accelerated Decomposition of δ-HMX.
    Sharia O; Tsyshevsky R; Kuklja MM
    J Phys Chem Lett; 2013 Mar; 4(5):730-4. PubMed ID: 26281926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate.
    Shan TR; Wixom RR; Mattsson AE; Thompson AP
    J Phys Chem B; 2013 Jan; 117(3):928-36. PubMed ID: 23272738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic response of the co-crystal of CL-20/TNT under shock loading: molecular dynamics simulation.
    Li Y; Yu WL; Huang H; Zhu M; Wang JT
    RSC Adv; 2021 Nov; 11(61):38383-38390. PubMed ID: 35493208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of polar surfaces on decomposition of molecular materials.
    Kuklja MM; Tsyshevsky RV; Sharia O
    J Am Chem Soc; 2014 Sep; 136(38):13289-302. PubMed ID: 25170566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shock tube study on the thermal decomposition of n-butanol.
    Rosado-Reyes CM; Tsang W
    J Phys Chem A; 2012 Oct; 116(40):9825-31. PubMed ID: 22934735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals: plane-specific effects.
    He L; Sewell TD; Thompson DL
    J Chem Phys; 2012 Jan; 136(3):034501. PubMed ID: 22280762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The formation mechanism of twin type shear bands in β-HMX: molecular rotation and translation.
    Li J; Zhang C; Wang Y; Zeng Z
    J Mol Model; 2024 Jan; 30(2):30. PubMed ID: 38195779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms.
    Peukert SL; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 May; 117(18):3718-28. PubMed ID: 23510116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shock-induced plasticity and phase transformation in single crystal magnesium: an interatomic potential and non-equilibrium molecular dynamics simulations.
    Jian Z; Chen Y; Xiao S; Wang L; Li X; Wang K; Deng H; Hu W
    J Phys Condens Matter; 2022 Jan; 34(11):. PubMed ID: 34920445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study on effect of heating rate on thermal decomposition of HMX energetic materials by in-situ diffuse reflection FTIR spectrum].
    Liu XY; Wang L; Zheng MX; Jiang Y; Luo YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):1951-4. PubMed ID: 18306770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shock-Induced Hot Spot Formation and Spalling in 1,3,5-trinitroperhydro-1,3,5-triazine Containing a Cube Void.
    Zhang Y; Liu H; Yang Z; Li Q; He Y
    ACS Omega; 2019 May; 4(5):8031-8038. PubMed ID: 31459892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling multiscale evolution of numerous voids in shocked brittle material.
    Yu Y; Wang W; He H; Lu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043309. PubMed ID: 24827366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations.
    Qi T; Bauschlicher CW; Lawson JW; Desai TG; Reed EJ
    J Phys Chem A; 2013 Nov; 117(44):11115-25. PubMed ID: 24094313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations.
    Wang BT; Shao JL; Zhang GC; Li WD; Zhang P
    J Phys Condens Matter; 2010 Nov; 22(43):435404. PubMed ID: 21403328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics.
    Han SP; van Duin AC; Goddard WA; Strachan A
    J Phys Chem B; 2011 May; 115(20):6534-40. PubMed ID: 21542572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical reactions of a CL-20 crystal under heat and shock determined by ReaxFF reactive molecular dynamics simulations.
    Wang F; Chen L; Geng D; Lu J; Wu J
    Phys Chem Chem Phys; 2020 Oct; 22(40):23323-23332. PubMed ID: 33035287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.