These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Gliding flight in a jackdaw: a wind tunnel study. Rosén M; Hedenström A J Exp Biol; 2001 Mar; 204(Pt 6):1153-66. PubMed ID: 11222131 [TBL] [Abstract][Full Text] [Related]
8. Gliding for a free lunch: biomechanics of foraging flight in common swifts ( Hedrick TL; Pichot C; de Margerie E J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30455382 [TBL] [Abstract][Full Text] [Related]
9. Birds repurpose the role of drag and lift to take off and land. Chin DD; Lentink D Nat Commun; 2019 Nov; 10(1):5354. PubMed ID: 31767856 [TBL] [Abstract][Full Text] [Related]
10. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
11. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. KleinHeerenbrink M; Johansson LC; Hedenström A J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482 [TBL] [Abstract][Full Text] [Related]
12. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Rao C; Ikeda T; Nakata T; Liu H Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148 [TBL] [Abstract][Full Text] [Related]
14. On the autorotation of animal wings. Ortega-Jimenez VM; Martín-Alcántara A; Fernandez-Feria R; Dudley R J R Soc Interface; 2017 Jan; 14(126):. PubMed ID: 28077761 [TBL] [Abstract][Full Text] [Related]
15. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Fu J; Liu X; Shyy W; Qiu H Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888 [TBL] [Abstract][Full Text] [Related]
16. Aerodynamic flight performance in flap-gliding birds and bats. Muijres FT; Henningsson P; Stuiver M; Hedenström A J Theor Biol; 2012 Aug; 306():120-8. PubMed ID: 22726811 [TBL] [Abstract][Full Text] [Related]
17. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula). KleinHeerenbrink M; Warfvinge K; Hedenström A J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178 [TBL] [Abstract][Full Text] [Related]
18. Aerodynamics of gliding flight in common swifts. Henningsson P; Hedenström A J Exp Biol; 2011 Feb; 214(Pt 3):382-93. PubMed ID: 21228197 [TBL] [Abstract][Full Text] [Related]
19. The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device. Ito MR; Duan C; Wissa AA Bioinspir Biomim; 2019 Aug; 14(5):056015. PubMed ID: 31357180 [TBL] [Abstract][Full Text] [Related]
20. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing. Linehan T; Mohseni K Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]