BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24964203)

  • 1. Plasmin activity in UHT milk: relationship between proteolysis, age gelation, and bitterness.
    Rauh VM; Johansen LB; Ipsen R; Paulsson M; Larsen LB; Hammershøj M
    J Agric Food Chem; 2014 Jul; 62(28):6852-60. PubMed ID: 24964203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmin activity in pressurized milk.
    García-Risco MR; Recio I; Molina E; López-Fandiño R
    J Dairy Sci; 2003 Mar; 86(3):728-34. PubMed ID: 12703607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destabilization of UHT milk by protease AprX from Pseudomonas fluorescens and plasmin.
    Zhang C; Bijl E; Hettinga K
    Food Chem; 2018 Oct; 263():127-134. PubMed ID: 29784297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of changes in plasmin activity and proteolysis on heating milk.
    Crudden A; Oliveira JC; Kelly AL
    J Dairy Res; 2005 Nov; 72(4):493-504. PubMed ID: 16223467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of added plasmin on the formation and rheological properties of rennet-induced skim milk gels.
    Srinivasan M; Lucey JA
    J Dairy Sci; 2002 May; 85(5):1070-8. PubMed ID: 12086040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of psychrotrophic bacteria and of an isolated protease from Pseudomonas fluorescens M3/6 on the plasmin system of fresh milk.
    Fajardo-Lira C; Oria M; Hayes KD; Nielsen SS
    J Dairy Sci; 2000 Oct; 83(10):2190-9. PubMed ID: 11049058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ELISA to detect proteolysis of ultrahigh-temperature milk upon storage.
    Dupont D; Lugand D; Rolet-Repecaud O; Degelaen J
    J Agric Food Chem; 2007 Aug; 55(17):6857-62. PubMed ID: 17645342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in Particle Size, Sedimentation, and Protein Microstructure of Ultra-High-Temperature Skim Milk Considering Plasmin Concentration and Storage Temperature.
    Yun SY; Imm JY
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted peptides for the quantitative evaluation of casein plasminolysis in drinking milk.
    Cattaneo S; Stuknytė M; Pellegrino L; De Noni I
    Food Chem; 2014 Jul; 155():179-85. PubMed ID: 24594172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelation mechanism of milk as influenced by temperature and pH; studied by the use of transglutaminase cross-linked casein micelles.
    Vasbinder AJ; Rollema HS; Bot A; de Kruif CG
    J Dairy Sci; 2003 May; 86(5):1556-63. PubMed ID: 12778566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New aspects of naturally occurring proteases in bovine milk.
    Reimerdes EH
    J Dairy Sci; 1983 Aug; 66(8):1591-600. PubMed ID: 6225788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of psychrotrophic microorganisms on the plasmin system in milk.
    Fajardo-Lira CE; Nielsen SS
    J Dairy Sci; 1998 Apr; 81(4):901-8. PubMed ID: 9594380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled proteolysis and the properties of milk gels.
    Li J; Dalgleish DG
    J Agric Food Chem; 2006 Jun; 54(13):4687-95. PubMed ID: 16787016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of peptides reflecting the storage of UHT milk by MALDI-TOF-MS peptide profiling.
    Dalabasmaz S; Dittrich D; Kellner I; Drewello T; Pischetsrieder M
    J Proteomics; 2019 Sep; 207():103444. PubMed ID: 31323422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/kappa-casein aggregates.
    Guyomarc'h F; Renan M; Chatriot M; Gamerre V; Famelart MH
    J Agric Food Chem; 2007 Dec; 55(26):10986-93. PubMed ID: 18038987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of native milk proteinase and its zymogen during proteolysis in normal bovine milk.
    de Rham O; Andrews AT
    J Dairy Res; 1982 Nov; 49(4):577-85. PubMed ID: 6217233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of temperature-dependent changes in stored UHT milk.
    Holland JW; Gupta R; Deeth HC; Alewood PF
    J Agric Food Chem; 2011 Mar; 59(5):1837-46. PubMed ID: 21322568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of methods for analysis of proteolysis by plasmin in milk.
    Chove LM; Grandison AS; Lewis MJ
    J Dairy Res; 2011 May; 78(2):184-90. PubMed ID: 21411033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmin-mediated proteolysis of casein in bovine milk.
    Eigel WN; Hofmann CJ; Chibber BA; Tomich JM; Keenan TW; Mertz ET
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2244-8. PubMed ID: 156365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and qualitative variability of the caseinolytic potential of different strains of Pseudomonas fluorescens: implications for the stability of casein micelles of UHT milks during their storage.
    Baglinière F; Tanguy G; Jardin J; Matéos A; Briard V; Rousseau F; Robert B; Beaucher E; Humbert G; Dary A; Gaillard JL; Amiel C; Gaucheron F
    Food Chem; 2012 Dec; 135(4):2593-603. PubMed ID: 22980847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.