These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24964272)

  • 1. Physical quenching in competition with the formation of cyclobutane pyrimidine dimers in DNA photolesion.
    Zhao H; Liu K; Song D; Su H
    J Phys Chem A; 2014 Oct; 118(39):9105-12. PubMed ID: 24964272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced formation mechanism of the thymine-thymine (6-4) adduct.
    Giussani A; Serrano-Andrés L; Merchán M; Roca-Sanjuán D; Garavelli M
    J Phys Chem B; 2013 Feb; 117(7):1999-2004. PubMed ID: 23339629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A doorway state leads to photostability or triplet photodamage in thymine DNA.
    Kwok WM; Ma C; Phillips DL
    J Am Chem Soc; 2008 Apr; 130(15):5131-9. PubMed ID: 18335986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A triplet mechanism for the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA.
    Zhang RB; Eriksson LA
    J Phys Chem B; 2006 Apr; 110(14):7556-62. PubMed ID: 16599537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA: why are thymines more reactive?
    Durbeej B; Eriksson LA
    Photochem Photobiol; 2003 Aug; 78(2):159-67. PubMed ID: 12945584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thymine dimerization in DNA model systems: cyclobutane photolesion is predominantly formed via the singlet channel.
    Schreier WJ; Kubon J; Regner N; Haiser K; Schrader TE; Zinth W; Clivio P; Gilch P
    J Am Chem Soc; 2009 Apr; 131(14):5038-9. PubMed ID: 19309140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM studies reveal pathways leading to the quenching of the formation of thymine dimer photoproduct by flanking bases.
    Lee W; Matsika S
    Phys Chem Chem Phys; 2015 Apr; 17(15):9927-35. PubMed ID: 25776223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical insight into the intrinsic ultrafast formation of cyclobutane pyrimidine dimers in UV-irradiated DNA: thymine versus cytosine.
    Serrano-Pérez JJ; González-Ramírez I; Coto PB; Merchán M; Serrano-Andrés L
    J Phys Chem B; 2008 Nov; 112(45):14096-8. PubMed ID: 18928316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of DNA photodimerization: intrinsic production of cyclobutane cytosine dimers.
    Roca-Sanjuán D; Olaso-González G; González-Ramírez I; Serrano-Andrés L; Merchán M
    J Am Chem Soc; 2008 Aug; 130(32):10768-79. PubMed ID: 18627152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitized photochemistry of di(4-tetrazolouracil) dinucleoside monophosphate as a route to dicytosine cyclobutane photoproduct precursors.
    Peyrane F; Clivio P
    Photochem Photobiol Sci; 2013 Aug; 12(8):1366-74. PubMed ID: 23572020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Intrinsically Low Quantum Yields of Pyrimidine DNA Photodamages: Evaluating the Reactivity of the Corresponding Minimum Energy Crossing Points.
    Giussani A; Worth GA
    J Phys Chem Lett; 2020 Jul; 11(13):4984-4989. PubMed ID: 32490676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer.
    Horikoshi N; Tachiwana H; Kagawa W; Osakabe A; Matsumoto S; Iwai S; Sugasawa K; Kurumizaka H
    Biochem Biophys Res Commun; 2016 Feb; 471(1):117-22. PubMed ID: 26837048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplet-Induced Lesion Formation at CpT and TpC Sites in DNA.
    Gontcharov J; Liu L; Pilles BM; Carell T; Schreier WJ; Zinth W
    Chemistry; 2019 Nov; 25(66):15164-15172. PubMed ID: 31538684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of the Decay of Thymine Triplets in DNA Single Strands.
    Pilles BM; Bucher DB; Liu L; Clivio P; Gilch P; Zinth W; Schreier WJ
    J Phys Chem Lett; 2014 May; 5(9):1616-22. PubMed ID: 26270105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational reference data for the photochemistry of cyclobutane pyrimidine dimers.
    Barbatti M
    Chemphyschem; 2014 Oct; 15(15):3342-54. PubMed ID: 25044616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-induced TA photoproducts: formation and hydrolysis in double-stranded DNA.
    Asgatay S; Martinez A; Coantic-Castex S; Harakat D; Philippe C; Douki T; Clivio P
    J Am Chem Soc; 2010 Aug; 132(30):10260-1. PubMed ID: 20662506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved study of thymine dimer formation.
    Marguet S; Markovitsi D
    J Am Chem Soc; 2005 Apr; 127(16):5780-1. PubMed ID: 15839663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence dependence on DNA photochemistry: a computational study of photodimerization pathways in TpdC and dCpT dinucleotides.
    Martínez-Fernández L; Improta R
    Photochem Photobiol Sci; 2018 May; 17(5):586-591. PubMed ID: 29624198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.
    Mendieta-Moreno JI; Trabada DG; Mendieta J; Lewis JP; Gómez-Puertas P; Ortega J
    J Phys Chem Lett; 2016 Nov; 7(21):4391-4397. PubMed ID: 27768300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of cytosine-containing cyclobutane dimers to DNA damage produced by photosensitized triplet-triplet energy transfer.
    Douki T; Bérard I; Wack A; Andrä S
    Chemistry; 2014 May; 20(19):5787-94. PubMed ID: 24668918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.